
CPSC 311: Conditionals and syntactic sugar (DRAFT)
(“lec-conditionals”)

Joshua Dunfield
University of British Columbia

September 25, 2016

Our language so far can do arithmetic and apply functions (even to other functions), which
is not completely useless but can’t express functions like factorial x! or even absolute value |x|.
Factorial needs some way of repeating a multiplication (either recursion or iteration), and needs a
conditional to test whether x is zero. Absolute value must test whether its argument is less than
zero, to tell it whether to return −x (which would be written (Sub (Num 0) (Id x))) in Fun abstract
syntax, or {- 0 x} in Fun concrete syntax) or just x (in abstract syntax, (Id x); in concrete syntax,
x).

Actually, our language can already express recursion and conditionals, but the programs you
write will look very strange. More on that later.

1 Ifzero

We need a way for a Fun expression to test a value, and evaluate one of two expressions depending
on what the value is. So we’ll add “Ifzero”.

〈E〉 ::= ...
| {Ifzero 〈E〉 〈E〉 〈E〉}

(define-type E

[Num (n number?)]

[Add (lhs E?) (rhs E?)]

[Sub (lhs E?) (rhs E?)]

[Let (name symbol?) (named-expr E?) (body E?)]

[Id (name symbol?)]

[Lam (name symbol?) (body E?)]

[App (function E?) (argument E?)]

[Ifzero (scrutinee E?) (zero-branch E?) (nonzero-branch E?)]

)

With function application App, we saw that we could use either the value strategy, or the expres-
sion strategy, and each had advantages and disadvantages. For Ifzero, the first step is to evaluate
the “scrutinee” (because Ifzero is inspecting or “scrutinizing” this expression, to see if it evaluates
to zero). But should we evaluate both branches, or just one?

Once we add recursion, the answer will need to be “just one”; otherwise, we would always
recurse forever. Even without recursion, the answer should be “just one”. Suppose we have an
Ifzero expression shaped like this:(

Ifzero
(
App (Lam z eB) (Num 77)

)(
Num 0

)(
App (Lam x eTHINKING) (Num 100)

))
1 2016/9/25

§1 Ifzero

I’m assuming that eB is some interesting expression (so we can’t immediately see whether apply-
ing (Lam z eB) to (Num 77) is going to return (Num 0)) and eTHINKING is a very complicated
expression that will take a long time to evaluate. If the first expression evaluates to zero, the
whole Ifzero is going to return its “zero branch”, which is (Num 0). We shouldn’t waste time on
eTHINKING—we would throw away its result anyway.

The following rules evaluate only one branch:

e ⇓ (Num 0) eZ ⇓ v

(Ifzero e eZ eNZ) ⇓ v
??Eval-ifzero-zero

e ⇓ (Num n) eNZ ⇓ v

(Ifzero e eZ eNZ) ⇓ v
??Eval-ifzero-nonzero

Is this right? Something is missing.

2 2016/9/25

§1 Ifzero

What’s missing is a premise in rule Eval-ifzero-nonzero saying that n 6= 0. Without this premise,
when e ⇓ (Num 0), we could apply either rule. That’s really bad if we’re trying to use Ifzero to
prevent unbounded recursion. It also violates determinism, that is:

“For all expressions e, if e ⇓ v1 and e ⇓ v2, then v1 = v2.”

There are good reasons to violate determinism (can you think of any?), but forgetting a premise
isn’t one of them.

So we really want these new rules:

e ⇓ (Num 0) eZ ⇓ v

(Ifzero e eZ eNZ) ⇓ v
Eval-ifzero-zero

e ⇓ (Num n) n 6= 0 eNZ ⇓ v

(Ifzero e eZ eNZ) ⇓ v
Eval-ifzero-nonzero

Question: These rules sort of suggest that my interpreter should only evaluate one of eZ and
eNZ—either I apply Eval-ifzero-zero, or Eval-ifzero-nonzero, and each of those two rules evaluates
only one of eZ and eNZ. What if I evaluate both of them? Can my interpreter still return the right
value? And if it does, isn’t that “following the rules”?

For the particular language we have now, you can evaluate both eZ and eNZ in your interpreter
(meaning, call interp recursively on both eZ and eNZ), and you will always get the correct result—
assuming you don’t do the strange tricks I alluded to earlier to obtain recursion!

Once we add recursion, you will not be able to evaluate both branches: if one of the branches
recurses forever, but it’s not the branch you need to take, your interpreter will recurse forever even
though a derivation exists.

2 Syntactic sugar

This Ifzero expression doesn’t seem too versatile; what if we want to test if a number is less than
zero? Should we add another kind of expression, Iflessthanzero? We could, but a better, more
general design is to add booleans and a general “if-then-else” (like Racket’s if) to the language,
which will be part of the next assignment.

Exercise 1. Write a Fun expression that behaves like Iflessthanzero, using only Ifzero and the
other features of Fun (including recursion). It only needs to work for integers; don’t worry about
other numbers. (I think I have a solution, but I haven’t written it down. . . it has a peculiar Turing-
machine flavour.)

Less perversely, we can code up Ifequal: instead of (Ifequal e1 e2 eEq eNotEq),
write (Ifzero (Sub e1 e2) eEq eNotEq). It would be annoying to actually write that instead of
Ifequal. On the other hand, it would be annoying to add Ifequal to the language: we would have to

• extend the grammar,

• add a variant to the abstract syntax,

• update our parser,

• figure out new evaluation rules,

3 2016/9/25

§2 Syntactic sugar

• extend the definition of substitution, and

• add code to our interpreter.

We could certainly do these tasks, but it’s not just work for us—we’re also making everything
in the specification of the language bigger. If we were proving things in 311, we would also want
to extend our proofs of whatever language properties we care about, such as determinism. And if
our language specification is given using rules, the new evaluation rules will become part of the
language manual, making it bigger.

There’s another option that avoids doing most of the above tasks. It’s a common practice in
language design: add a new feature as syntactic sugar. We still have to extend the grammar and
update our parser, but nothing else has to change, because we will translate (“desugar”) Ifequal
within the parser:

{Ifequal e1 e2 eEq eNotEq} is parsed as (Ifzero (Sub e1 e2) eEq eNotEq)

This seems to save a lot of work. Is there any reason not to do this?
Unfortunately, yes: parsing and unparsing are no longer inverse operations. That is, transform-

ing concrete syntax to abstract syntax (parsing) and then transforming the abstract syntax back to
concrete syntax (unparsing) won’t necessarily give the original concrete syntax back.

That might not sound too bad. . . except that unparsing is also how we would want to print error
messages. So the error messages will be confusing, because they refer to code the user didn’t write!
For example, our interpreter should print an error message if you try to use Ifequal with Lams—and
indeed it will, assuming that subtracting Lams prints an error message. But the error message will
say that Sub was given invalid arguments, not that Ifequal was!

Here’s an example from a real programming language, SML (my favourite language). To make
any sense of this, you probably need to know that case is SML’s version of type-case and that SOME
is a variant (constructor) declared by (SML’s version of) define-type; I’ll try to explain the rest as
we go.

Standard ML of New Jersey v110.72 [built: Tue Jan 11 13:30:58 2011]

- fun f x = case x of SOME y => y

| SOME z => z;

stdIn:1.14-2.36 Error: match redundant and nonexhaustive

SOME y => ...

--> SOME z => ...

SML is complaining that I’ve written the same constructor twice in two branches (“redundant”)
and also that I didn’t write another constructor at all (“nonexhaustive”), errors you’ve already seen
(with different terminology) with type-case.

In SML (and in PLAI), it’s common to write a function that immediately does a case (type-case),
so SML allows you to write functions in “clausal form”, like this:

fun fib 0 = 0

| fib 1 = 1

| fib n = fib (n-2) + fib (n-1);

This closely resembles mathematical notation for defining functions by cases, but it behaves
exactly like

4 2016/9/25

§2 Syntactic sugar

fun fib x = case x of 0 => 0

| 1 => 1

| n => fib (n-2) + fib (n-1);

The Definition of Standard ML defines clausal form to be a “derived form”, which is a fancy
name for syntactic sugar: the meaning of a clausal function is given by a translation to a function
whose body is a case. That is, the clausal form syntax is derived from the “real” syntax (case).

Since the error message shows the unparsing of the abstract syntax, it shows code that doesn’t
match what I wrote:

- fun f (SOME y) = y

| f (SOME z) = z;

= stdIn:1.9-3.23 Error: match redundant and nonexhaustive

SOME y => ...

--> SOME z => ...

Showing the “wrong” code teaches SML programmers which language features are derived
forms, which is somewhat useful but probably doesn’t make up for the frustration.

5 2016/9/25

	
	

