
CPSC 311: Environment-based semantics:
Closures (DRAFT)

(“lec-closures”)

Joshua Dunfield Alec Thériault Khurram Jafery

University of British Columbia

November 9, 2016

1 Attack of the Dynamic Scope

Fun is broken! (Typed Fun is not broken, though! Types win again?)
Scoping in Fun was supposed to be lexical, where an instance of an identifier refers to the

nearest enclosing binding occurrence. Thus, in

(Let x (Num 1) (Let x (Num 2) (Id x)))

the instance (Id x) refers to the inner binding occurrence (and therefore to (Num 2)).
Before we added Lam and App, scoping actually was properly lexical: attempting to evaluate an

identifier that has no enclosing binder, as in

(Let x (Id y) (Let x (Num 2) (Id x)))

would cause a free variable error.
However, scoping in Fun was partly lexical, and partly dynamic:(

Let f
(
Lam y (Id z)

) (
Let z (Num 2) (App (Id f) (Num 0))

))
The rule Eval-let substitutes (Lam y (Id z)) for f, and then evaluates(

Let z (Num 2) (App (Lam y (Id z)) (Num 0))
)

in which (Num 2) is substituted for z:

(App (Lam y (Num 2)) (Num 0))

which evaluates to (Num 2). Observe that (Lam y (Id z)) doesn’t look at its argument y, which in
any case is substituted with (Num 0), which is not (Num 2). In PL jargon, we say that the identifier
(Id z) in the body of (Lam y (Id z))—which really shouldn’t refer to anything and should be an
error—has been captured by the binding (Let z (Num 2) . . .).

1 2016/11/9

§1 Attack of the Dynamic Scope

1.1 A Brief History of Infamy

The story goes that dynamic scope—in which the “most recent” binding is used, rather than the lex-
ically enclosing binding—was invented, by accident, in Lisp. Subsequent versions of Lisp corrected
this, except for Emacs Lisp (which most of Emacs is written in).

In Fun, we implemented something that “is” lexical scoping, in the sense that an identifier in
any correctly lexically-scoped expression will refer to its nearest lexically-enclosing binder. But we
also implemented a little dynamic scoping: in an expression with a Lam, we allow free identifiers
inside the body, which can then be captured by later bindings.

We corrected this (unknowingly) in Typed Fun: When typeof sees an identifier, it checks that
the identifier appears in the typing context tc (written Γ in the rules).

The fix in Fun itself is—I’m pretty sure—to add a check in subst that makes sure the expression
being substituted has no free identifiers (not the expression being substituted into, which probably
does have a free identifier: the identifier being substituted!).

For example, in the example with f and (Lam y (Id z)) above, that check would find the free
identifier (Id z), and raise an error.

2 2016/11/9

§1 Attack of the Dynamic Scope

2 Functions in environment-based semantics

The eruption of dynamic scoping is relevant, however, because another way to accidentally get
dynamic scoping is to add functions to an environment semantics. So let’s do that, and then fix it.

e ⇓ v Fun expression e evaluates to value v

(Num n) ⇓ (Num n)
Eval-num

e1 ⇓ (Num n1) e2 ⇓ (Num n2)

(Add e1 e2) ⇓ (Num n1+ n2)
Eval-add

e1 ⇓ (Num n1) e2 ⇓ (Num n2)

(Sub e1 e2) ⇓ (Num n1− n2)
Eval-sub

e1 ⇓ v1 [
v1
/
x
]
e2 ⇓ v2

(Let x e1 e2) ⇓ v2 Eval-let

(Id x) free-variable-error
Eval-free-identifier

(Lam x e1) ⇓ (Lam x e1)
Eval-lam

e1 ⇓ (Lam x eB) e2 ⇓ v2 [
v2
/
x
]
eB ⇓ v

(App e1 e2) ⇓ v Eval-app-value

env ` e ⇓ v Under environment env,
Fun expression e evaluates to value v

env ` (Num n) ⇓ (Num n)
Env-num

env ` e1 ⇓ (Num n1) env ` e2 ⇓ (Num n2)

env ` (Add e1 e2) ⇓ (Num n1+ n2)
Env-add

env ` e1 ⇓ (Num n1) env ` e2 ⇓ (Num n2)

env ` (Sub e1 e2) ⇓ (Num n1− n2)
Env-sub

env ` e1 ⇓ v1 x=v1, env ` e2 ⇓ v2
env ` (Let x e1 e2) ⇓ v2 Env-let

lookup(env, x) = e

env ` (Id x) ⇓ e Env-id

lookup(env, x) undefined

env ` (Id x) unknown-id-error
Env-unknown-id

env ` (Lam x e1) ⇓ (Lam x e1)
**Env-lam-dynamic

env ` e1 ⇓ (Lam x eB) env ` e2 ⇓ v2 x=v2, env ` eB ⇓ v
env ` (App e1 e2) ⇓ v **Env-app-dynamic

3 2016/11/9

§2 Functions in environment-based semantics

2.1 Boom! Lambda

(In honour of the failed renaming of Pie R Squared.)
The above rules, which seem reasonable—**Env-app-dynamic follows the pattern of Env-let—

cause even more dynamic scoping than my oversight in substitution-based Fun.
Consider the expression(

Let y (Num 1)
(
Let f (Lam x (Id y))

(
Let y (Num 2) (App (Id f) (Num 0))

)))
In a substitution-based semantics, the first thing we do is substitute (Num 1) for y:(

Let f (Lam x (Num 1))
(
Let y (Num 2) (App (Id f) (Num 0))

))
This means that f (will be substituted with) a constant function that always returns (Num 1).

However, with the above **-rules, we add y=(Num 1) to the empty environment, then f=(Lam x (Id y)),
and then y=(Num 2). Since lookup looks at the environment starting from the left, looking up an
instance of (Id y) will result in (Num 2):

envyfy ` (Id f) ⇓ (Lam x (Id y)) envyfy ` (Num 0) ⇓ (Num 0) x=(Num 0), envyfy ` (Id y) ⇓ (Num 2)

y=(Num 2) , f=(Lam x (Id y)), y=(Num 1), ∅︸ ︷︷ ︸
envyfy

` (App (Id f) (Num 0)) ⇓ (Num 2)
**Env-app-dynamic

The problem is that when f=(Lam x (Id y)) was added to the environment, looking up (Id y) would
have given (Num 1), since that is the nearest enclosing binding. But instead, we used a binding
that was nowhere in scope when f was bound.

Under lexical scoping, you can always determine where an identifier’s binder is without “looking
into the future”: if a nested Let that comes later happens to shadow an identifier, it won’t matter.
Under dynamic scoping, which we have now re-created, this isn’t the case.

Question: Can you show the rest of the derivation?

y=(Num 1), ∅ `
(Lam x (Id y))⇓ (Lam x (Id y))

envfy `
(Num 2)⇓ (Num 2)

envyfy︷ ︸︸ ︷
y=(Num 2) , f=(Lam x (Id y)), y=(Num 1), ∅ `

X see derivation above
(App (Id f) (Num 0)) ⇓ (Num 2)

f=(Lam x (Id y)), y=(Num 1), ∅︸ ︷︷ ︸
envfy

`
(
Let y (Num 2) (App · · ·)

) ⇓ (Num 2)
Env-let

y=(Num 1), ∅ `
(
Let f (Lam x (Id y))

(
Let y · · ·

)) ⇓ (Num 2)
Env-let

2.2 Closures

The solution is to remember something about the environment that existed when the binding hap-
pened, that is, when the Lam was evaluated.

The easiest way to remember something about the environment is to remember the entire
environment, so that’s what we’ll do. The “pairing up” of a Lam with its environment is called a
closure.

Closures are a new kind of animal; where do they live? For uniformity, it will be easiest (I
think) to think of them as expressions. Alternatively, we could make them a new kind of thing in
the environment, so that we’d have ordinary value bindings in the environment, and also closure
bindings.

This leads to the following define-type:

4 2016/11/9

§2 Functions in environment-based semantics

(define-type E

[Num (n number?)]

[Add (lhs E?) (rhs E?)]

[Sub (lhs E?) (rhs E?)]

[Let (name symbol?) (named-expr E?) (body E?)]

[Id (name symbol?)]

[Lam (name symbol?) (body E?)]

[App (function E?) (argument E?)]

[Clo (env Env?) (e E?)] ; not in concrete syntax

)

We’ve already seen a define-type in which a variant didn’t correspond to a single production
of the BNF: Binop. There, however, the Binop variants were generated inside the parser. Here,
the parser will never generate a closure Clo. Instead, closures will be generated only inside the
interpreter env-interp.

env ` (Lam x e1) ⇓ (Clo env (Lam x e1)
) Env-lam

env ` (Clo envold e) ⇓ (Clo envold e)
Env-clo

env ` e1 ⇓ (Clo envold (Lam x eB)) env ` e2 ⇓ v2 x=v2, envold ` eB ⇓ v
env ` (App e1 e2) ⇓ v Env-app

Question: What happens if the Lam has a free variable that isn’t in the environment envold,
but is in the newer environment we have when we evaluate App? If we need a free-variable check
in subst for substitution-based semantics, do we also need one for environment-based semantics?

If the Lam tries to use an identifier that isn’t in the environment when the Lam was evaluated,
this will be an error. The error won’t happen until the Lam—which is now a (Clo envold (Lam . . .))—
is applied, but it will be a proper error; the identifier will not be captured by a later binding, because
that binding won’t be in envold.

If our language is typed, this doesn’t matter, because the type checker will catch this error
statically.

In practice, particularly in a compiler, we only store the actual free identifiers of the Lam in the
closure—not the entire environment. After parsing, we can figure out what the free identifiers of
the Lam are, so we’ll know which bindings from envold to save.

5 2016/11/9

§2 Functions in environment-based semantics

3 Recursive closures

At this point, we could add more features (pairs, trees, sums, etc.) without any trouble. Instead,
let’s try to add the feature that will give us trouble: Rec.

Environments env ::= ∅
| x=e, env
| E environment variable
| (Env-Rec E env) recursive environment

Definition of environment substitution over environments:

[env1/E1]∅ = ∅
[env1/E1](x=e, env2) = x=[env1/E1]e, [env1/E1]env2

[env1/E1]E1 = env1

[env1/E1]E2 = E2 if E1 6= E2
[env1/E1](Env-Rec E1 env2) = (Env-Rec E1 env2)
[env1/E1](Env-Rec E2 env2) = (Env-Rec E2 [env1/E1]env2) if E1 6= E2

Definition of environment substitution over expressions:

[env/E](Num n) = (Num n)

[env/E](Binop op e1 e2) = (Binop op [env/E]e1 [env/E]e2)
[env/E](Btrue) = (Btrue)

[env/E](Bfalse) = (Bfalse)

[env/E](Ite e eThen eElse) = (Ite [env/E]e [env/E]eThen [env/E]eElse)
[env/E](Id x) = (Id x)

[env/E](Let x e1 e2) = (Let x [env/E]e1 [env/E]e2)
[env/E](Lam x eB) = (Lam x [env/E]eB)
[env/E](App e1 e2) = (App [env/E]e1 [env/E]e2)
[env/E](Rec u eB) = (Rec u [env/E]eB)

[env1/E](Clo env2 e) = (Clo [env1/E]env2 [env1/E]e)

Definition of environment lookup:

lookup
(
(x = e, env), x

)
= e

lookup
(
(y = e, env), x

)
= lookup(env, x) if x 6= y

lookup
(
Env-Rec E env), x

)
= lookup

([
Env-Rec E env)/E

]
env, x

)

6 2016/11/9

§3 Recursive closures

env ` e ⇓ v Under environment env, expression e evaluates to value v

env ` (Num n) ⇓ (Num n)
Env-num

env ` e1 ⇓ v1 env ` e2 ⇓ v2 v1 op v2 = v

env ` (Binop op e1 e2) ⇓ v Env-binop

env ` (Btrue) ⇓ (Btrue)
Env-true

env ` (Bfalse) ⇓ (Bfalse)
Env-false

env ` e ⇓ (Btrue) env ` eThen ⇓ v
env ` (Ite e eThen eElse) ⇓ v Env-ite-true

env ` e ⇓ (Bfalse) env ` eElse ⇓ v
env ` (Ite e eThen eElse) ⇓ v Env-ite-false

lookup(env, x) = e env ` e ⇓ v
env ` (Id x) ⇓ v Env-id

env ` e1 ⇓ v1 x=v1, env ` e2 ⇓ v2
env ` (Let x e1 e2) ⇓ v2 Env-let

env ` (Lam x eB) ⇓ (Clo env (Lam x eB))
Env-lam

envold ` e ⇓ v
env ` (Clo envold e) ⇓ v Env-clo

env ` e1 ⇓ (Clo envold (Lam x eB)) env ` e2 ⇓ v2 x=v2, envold ` eB ⇓ v
env ` (App e1 e2) ⇓ v Env-app-value

(
Env-Rec E (u=(Clo E eB), env)

)
` eB ⇓ v E /∈ env

env ` (Rec u eB) ⇓ v Env-rec

7 2016/11/9

§3 Recursive closures

Example

lookup(envrec, u) = eLookup

lookup(envclo, u) = envclo ` ⇓
envclo ` (Id u) ⇓ Env-id

envrec ` (Clo envclo (Id u)) ⇓ Env-clo(
Env-Rec E (u=(Clo E (Id u)), ∅)

)
` (Id u) ⇓ Env-id

∅ `
(
Rec u (Id u)

) ⇓ Env-rec

envrec =
(
Env-Rec E (u=(Clo E (Id u)), ∅)

)
lookup(envrec, u) = lookup

((
Env-Rec E (u=(Clo E (Id u)), ∅)

)
, u
)

= lookup
([(

Env-Rec E (u=(Clo E (Id u)), ∅)
)/

E
](
u=(Clo E (Id u)), ∅

)
, u

)
= lookup

((
u=(Clo (Id u)), ∅

)
, u

)
= lookup

((
u=(Clo

(
Env-Rec E (u=(Clo E (Id u)), ∅)

)
(Id u)), ∅

)
, u

)
= lookup

((
u=(Clo

(
Env-Rec E (u=(Clo E (Id u)), ∅)

)
(Id u)), ∅

)
, u

)
=

(
Clo

(
Env-Rec E (u=(Clo E (Id u)), ∅)

)︸ ︷︷ ︸
envclo

(Id u)
)

= eLookup

8 2016/11/9

	
	A Brief History of Infamy

	
	Boom! Lambda
	Closures

	

