CPSC 311: Bidirectional typing: implementation and polymorphism (DRAFT) ("lec-bidir-poly")

Joshua Dunfield University of British Columbia

November 23, 2016

Overview: These notes cover the following.

- Starting with the rules on the last page of (the updated version of) lec-bidir.pdf, we replace pos, int, and rat, and also add subtyping—just by changing the second premise of Check-sub from A = B to A <: B.
- Polymorphism in languages like SML.
- First steps in adding polymorphism to Fun.

Reminder: Bidirectional typing replaces $\Gamma \vdash e : A$ with two different judgments:

 $\Gamma \vdash e \Rightarrow A$ read "under assumptions in Γ , the expression *e* synthesizes type A"

 $\Gamma \vdash e \leftarrow A$ read "under assumptions in Γ , the expression *e* checks against type A"

The difference between these judgments is in which parts of the judgment are *inputs* and which are *outputs*. When we want to derive $\Gamma \vdash e \Rightarrow A$, we only know Γ and e: the point is to figure out the type *A from e*, kind of like we did in typeof. But when deriving $\Gamma \vdash e \Leftarrow A$, we already know *A*, and just need to make sure that *e* does conform to (check against) the type *A*.

1 Typing implemented by bidir-2.rkt

Types: pos, int, rat, bool, A1 * A2, $A1 \rightarrow A2$

 $\frac{\Gamma(\mathbf{x}) = A}{\Gamma \vdash (\operatorname{Id} \mathbf{x}) \Rightarrow A} \operatorname{Synth-var} \quad \frac{\Gamma \vdash e \Rightarrow A}{\Gamma \vdash e \Leftarrow B} \operatorname{Check-sub} \quad \frac{\Gamma \vdash e \Leftarrow A}{\Gamma \vdash (\operatorname{Anno} e A) \Rightarrow A} \operatorname{Synth-anno}$ $\frac{\Gamma \vdash e1 \Rightarrow A \rightarrow B \qquad \Gamma \vdash e2 \Leftarrow A}{\Gamma \vdash (\mathsf{App} \ e1 \ e2) \Rightarrow B} \text{ Synth-app } \frac{x : A1, \Gamma \vdash e \Leftarrow A2}{\Gamma \vdash (\mathsf{Lam} \ x \ e) \Leftarrow A1 \rightarrow A2} \text{ Check-lam}$ $\frac{\mathbf{u}: \mathbf{A}, \Gamma \vdash \mathbf{e} \Leftarrow \mathbf{A}}{\Gamma \vdash (\operatorname{Rec} \mathbf{u} \ \mathbf{e}) \Leftarrow \mathbf{A}} \operatorname{Check-rec} \qquad \frac{\Gamma \vdash \mathbf{e} \mathbf{1} \Rightarrow \mathbf{A} \mathbf{1} \qquad \mathbf{x}: \mathbf{A} \mathbf{1}, \Gamma \vdash \mathbf{e} \mathbf{2} \Leftarrow \mathbf{A}}{\Gamma \vdash (\operatorname{Let} \mathbf{x} \ \mathbf{e} \mathbf{1} \ \mathbf{e} \mathbf{2}) \Leftarrow \mathbf{A}} \operatorname{Check-let}$ $\frac{n \in \mathbb{Z} \quad n \ge 0}{\Gamma \vdash (\mathsf{Num} \; n) \Rightarrow \mathsf{pos}} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{pos}}{\Gamma \vdash (\mathsf{Num} \; n) \Rightarrow \mathsf{int}} \; \frac{n \in \mathbb{Q}}{\Gamma \vdash (\mathsf{Num} \; n) \Rightarrow \mathsf{rat}} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}{\Gamma \vdash (\mathsf{Num} \; n) \Rightarrow \mathsf{rat}} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}{\mathsf{Synth}\mathsf{-}\mathsf{rat}} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}{\mathsf{Synth} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}{\mathsf{Synth} \mathsf{Synth} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}{\mathsf{Synth} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}{\mathsf{Synth} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}{\mathsf{Synth} \; \frac{\mathsf{Synth} \mathsf{Synth} \; \frac{\mathsf{Synth}\mathsf{-}\mathsf{rat}}{\mathsf{Synth} \; \frac{\mathsf{Synth} \mathsf{Synth} \; \frac{\mathsf{Synth} \mathsf{Synth} \; \frac{\mathsf{Synth} \mathsf{Synth} \; \frac{\mathsf{Synth} \; \frac{\mathsf{Synth$ $\frac{\text{op}: A1 * A2 \rightarrow B \quad \Gamma \vdash e1 \Leftarrow A1 \quad \Gamma \vdash e2 \Leftarrow A2}{\Gamma \vdash (\text{Binop op } e1 \ e2) \Rightarrow B}$ Synth-binop $\frac{1}{\Gamma \vdash (\mathsf{Btrue}) \Rightarrow \mathsf{bool}} \operatorname{Synth-btrue} \frac{1}{\Gamma \vdash (\mathsf{Bfalse}) \Rightarrow \mathsf{bool}} \operatorname{Synth-bfalse}$ $\frac{\Gamma \vdash e \Leftarrow \text{bool} \quad \Gamma \vdash e1 \Leftarrow A \quad \Gamma \vdash e2 \Leftarrow A}{\Gamma \vdash (\text{Ite } e \text{ e1 } e2) \Leftarrow A} \text{ Check-ite}$ $\frac{\Gamma \vdash e1 \Leftarrow A1 \qquad \Gamma \vdash e2 \Leftarrow A2}{\Gamma \vdash (\mathsf{Pair}\ e1\ e2) \Leftarrow (A1 \ast A2)} \text{ Check-pair}$ $\frac{\Gamma \vdash e \Rightarrow (A1 * A2) \qquad x1 : A1, x2 : A2, \Gamma \vdash eBody \Leftarrow A}{\Gamma \vdash (\mathsf{Pair-case} \ e \ x1 \ x2 \ eBody) \Leftarrow A} \text{ Check-pair-case}$ $\frac{\Gamma \vdash e1 \Rightarrow A1 \qquad \Gamma \vdash e2 \Rightarrow A2}{\Gamma \vdash (\text{Pair e1 e2}) \Rightarrow (A1 * A2)}$ Synth-pair

2

3

What is polymorphism?

In a language with polymorphism (poly = many; morph = form), some features of the language can operate with *multiple types*. "Some features" and "can operate with" are deliberately vague: there are many kinds of polymorphism, and a given language might allow one kind for some language fatures, under some circumstances, and another kind of polymorphism in others.

Kinds of polymorphism

In 1967, Christopher Strachey (who made important contributions to programming language semantics, *and* designed a key ancestor of C) distinguished two kinds of polymorphism:

- parametric polymorphism, and
- *ad hoc* polymorphism.

A further kind of polymorphism, perhaps the kind you've used the most, is *subtype polymorphism*, also called *inclusion polymorphism*. For example, if you have a pair of type pos * pos, you should be able to pass it to a function of type (rat * rat) \rightarrow bool.

3.1 Examples of parametric polymorphism

In parametric polymorphism, types include type variables that can be instantiated.

(see poly.sml)

To understand these types, we should really write the *quantifiers* that SML (implicitly) puts around these types. For example, identity_function has type

 $\forall \alpha. (\alpha \rightarrow \alpha)$ "for all types α, \ldots "

That is, any code that calls identity_function can provide something of any type it chooses, and will (if evaluation results in a value!) get back something of that same type.

identity_function 5; identity_function (1, 2);

In the first line above, 5 has SML type int, so SML instantiates α with int, resulting in the type

 $(\texttt{int} \rightarrow \texttt{int})$

Applying a function of type (int \rightarrow int) to an int results in an int, so identity_function 5 has type int.

A larger example is map_list, which has the polymorphic type

$$\forall \alpha. (\forall \beta. (\alpha \rightarrow \beta) \rightarrow (\alpha \text{ list}) \rightarrow (\beta \text{ list}))$$

This type says: if you pick types α and β (which, like meta-variables in typing rules, might or might not be *different* types), and pass (first) a function of type $\alpha \rightarrow \beta$ and (second) a list whose elements all have type α , then the value returned by calling map_list (if that call returns at all) will be a list whose elements are of type β .

(illustrate with map_list make_pair from poly.sml)

The reason this is called *parametric* polymorphism is that the types α and β don't matter: the implementation of map_list doesn't care what types you instantiate α and β with. In fact, in SML it is *impossible* for map_list to know which types α and β have been instantiated with!

If you try to do something that depends on α having a particular type, SML will infer a "less polymorphic" type instead:

val unpoly_map_list = fn : (bool -> 'b) -> bool list -> 'b list

The fact that a parametrically polymorphic function *cannot* inspect its argument's type means that we can prove "parametricity properties", such as:

If a function has type $\forall \alpha$. ($\alpha \rightarrow \alpha$), and it is applied to a value ν of some type A, and that application evaluates to a value, then the resulting value *is exactly* ν .

Or, suppose a function has type $\forall \alpha$. $((\alpha * \alpha) \rightarrow \alpha)$. It could return the first part of the pair, or the second part. Could it do anything else?

Turning the question around (sideways?): What functions besides map_list have map_list's type?

3.2 Examples of ad hoc polymorphism

A common form of *ad hoc* polymorphism is *operator overloading*: in many languages, the + operator works on more than one type of argument. For example, in SML, + works on both ints and reals (though not on string, and not on one int and one real).

3.3 Polymorphism in untyped languages

Is Racket polymorphic? The answer depends on whether we take "type" in the (vague) definition above to mean a static type (perhaps defined through typing rules), or whether we consider it more informally, so that, say, 3 and #false in Racket are of different types, even though Racket has no type system to stop you from compiling a program like (+ 3 #false).

• If we require "type" to mean a static type, then Racket is not polymorphic because, in a sense, it has *only one type*: the type of "s-expressions", which includes numbers, #true and #false, functions (lambda), lists, and everything else.

This claim is sometimes phrased as "dynamic 'typing' is *really* just *unityping*", a "unityped" language being a (statically) typed language with only one (*uni*-) type. Thus, Carnegie Mellon University's Bob Harper:

"Dynamic typing is but a special case of static typing, one that limits, rather than liberates... Something can hardly be *opposed* to that of which it is but a trivial special case." (from a 2011 blog post)

• If we say that *any* precise organization of code and/or data into subcategories is "typing", then #true and #false can be called "booleans", (lambda (x) x) can be called a "function", and so on. Then Racket is certainly polymorphic, because many functions that you can write in Racket—for example, (lambda (x) x)—work on many different kinds of Racket "types".

4 Polymorphism in Fun

To add polymorphism to Fun, we need to add two new forms of type:

• Polymorphic types

∀a. B

which are read "for all [types] a, ...".

• *Type variables* a, b, c, etc.

These new forms are meant to be used together. For example, the following will be the type of the identity function (Lam x (Id x)).

 $\forall a. (a \rightarrow a)$

The main idea is that, whenever an expression has a polymorphic type, it can be *instantiated* by "plugging in" different types. For example, if we plug in bool for a in the type above, we get

```
\mathsf{bool}\to\mathsf{bool}
```

Similar to substitution-based evaluation, which substitutes a value v for (Id x) throughout an expression *e*

we are substituting the type bool for the type variable a throughout a type:

$$\begin{split} & [A/a]B\\ & [\mathsf{bool}/a](a \to a) = \big([\mathsf{bool}/a]a\big) \to \big([\mathsf{bool}/a]a\big)\\ & = \mathsf{bool} \to \mathsf{bool} \end{split}$$

We'll also need a new form of assumption in our contexts:

 $\begin{array}{lll} \Gamma & ::= & \emptyset & & \text{Empty context} \\ & & & | & x : A, \Gamma & & \text{Context } \Gamma \text{ plus the assumption that variable } x \text{ is of type } A \\ & & & | & a \text{ type}, \Gamma & & \text{Context } \Gamma \text{ plus the assumption that } a \text{ is any type} \end{array}$

4.1 Typing rules

$$\frac{a \text{ type, } \Gamma \vdash e \Leftarrow A}{\Gamma \vdash (All \ a \ e) \Leftarrow \forall a. \ A} \text{ Check-all } \qquad \frac{\Gamma \vdash e \Rightarrow \forall b. \ B1}{\Gamma \vdash (At \ e \ A) \Rightarrow [A/b]B1} \text{ Synth-at}$$