
CPSC 311: Bidirectional typing:
implementation and polymorphism

(DRAFT)
(“lec-bidir-poly”)

Joshua Dunfield
University of British Columbia

November 23, 2016

Overview: These notes cover the following.

• Starting with the rules on the last page of (the updated version of) lec-bidir.pdf, we replace
pos, int, and rat, and also add subtyping—just by changing the second premise of Check-sub
from A = B to A <: B.

• Polymorphism in languages like SML.

• First steps in adding polymorphism to Fun.

Reminder: Bidirectional typing replaces Γ ` e : A with two different judgments:

Γ ` e⇒ A read “under assumptions in Γ , the expression e synthesizes type A”

Γ ` e⇐ A read “under assumptions in Γ , the expression e checks against type A”

The difference between these judgments is in which parts of the judgment are inputs and which are
outputs. When we want to derive Γ ` e ⇒ A, we only know Γ and e: the point is to figure out the
type A from e, kind of like we did in typeof. But when deriving Γ ` e ⇐ A, we already know A,
and just need to make sure that e does conform to (check against) the type A.

1 2016/11/23



§1 Typing implemented by bidir-2.rkt

1 Typing implemented by bidir-2.rkt

Types: pos , int , rat , bool, A1 ∗A2, A1→ A2

Γ(x) = A

Γ ` (Id x) ⇒ A
Synth-var

Γ ` e⇒ A A <: B

Γ ` e⇐ B
Check-sub

Γ ` e⇐ A

Γ ` (Anno e A) ⇒ A
Synth-anno

Γ ` e1⇒ A→ B Γ ` e2⇐ A

Γ ` (App e1 e2) ⇒ B
Synth-app

x : A1, Γ ` e⇐ A2

Γ ` (Lam x e) ⇐ A1→ A2
Check-lam

u : A, Γ ` e⇐ A

Γ ` (Rec u e) ⇐ A
Check-rec

Γ ` e1⇒ A1 x : A1, Γ ` e2⇐ A

Γ ` (Let x e1 e2) ⇐ A
Check-let

n ∈ Z n ≥ 0
Γ ` (Num n) ⇒ pos

Synth-pos
n ∈ Z

Γ ` (Num n) ⇒ int
Synth-int

n ∈ Q
Γ ` (Num n) ⇒ rat

Synth-rat

op : A1 ∗A2→ B Γ ` e1⇐ A1 Γ ` e2⇐ A2

Γ ` (Binop op e1 e2) ⇒ B
Synth-binop

Γ ` (Btrue) ⇒ bool
Synth-btrue

Γ ` (Bfalse) ⇒ bool
Synth-bfalse

Γ ` e⇐ bool Γ ` e1⇐ A Γ ` e2⇐ A

Γ ` (Ite e e1 e2) ⇐ A
Check-ite

Γ ` e1⇐ A1 Γ ` e2⇐ A2

Γ ` (Pair e1 e2) ⇐ (A1 ∗A2)
Check-pair

Γ ` e⇒ (A1 ∗A2) x1 : A1, x2 : A2, Γ ` eBody⇐ A

Γ ` (Pair-case e x1 x2 eBody) ⇐ A
Check-pair-case

Γ ` e1⇒ A1 Γ ` e2⇒ A2

Γ ` (Pair e1 e2) ⇒ (A1 ∗A2)
Synth-pair

2 2016/11/23



§1 Typing implemented by bidir-2.rkt

2 What is polymorphism?

In a language with polymorphism (poly = many; morph = form), some features of the language can
operate with multiple types. “Some features” and “can operate with” are deliberately vague: there
are many kinds of polymorphism, and a given language might allow one kind for some language
fatures, under some circumstances, and another kind of polymorphism in others.

3 Kinds of polymorphism

In 1967, Christopher Strachey (who made important contributions to programming language se-
mantics, and designed a key ancestor of C) distinguished two kinds of polymorphism:

• parametric polymorphism, and

• ad hoc polymorphism.

A further kind of polymorphism, perhaps the kind you’ve used the most, is subtype polymor-
phism, also called inclusion polymorphism. For example, if you have a pair of type pos ∗ pos, you
should be able to pass it to a function of type (rat ∗ rat) → bool.

3.1 Examples of parametric polymorphism

In parametric polymorphism, types include type variables that can be instantiated.
(see poly.sml)
To understand these types, we should really write the quantifiers that SML (implicitly) puts

around these types. For example, identity function has type

∀α. (α→ α) “for all types α, . . . ”

That is, any code that calls identity function can provide something of any type it chooses, and
will (if evaluation results in a value!) get back something of that same type.

identity_function 5;

identity_function (1, 2);

In the first line above, 5 has SML type int, so SML instantiates α with int, resulting in the type

(int → int)

Applying a function of type (int → int) to an int results in an int, so identity function 5 has
type int.

A larger example is map list, which has the polymorphic type

∀α.
(
∀β. (α→ β) → (α list) → (β list)

)
This type says: if you pick types α and β (which, like meta-variables in typing rules, might or might
not be different types), and pass (first) a function of type α→ β and (second) a list whose elements
all have type α, then the value returned by calling map list (if that call returns at all) will be a list
whose elements are of type β.

3 2016/11/23



§3 Kinds of polymorphism

(illustrate with map list make pair from poly.sml)

The reason this is called parametric polymorphism is that the types α and β don’t matter: the
implementation of map list doesn’t care what types you instantiate α and β with. In fact, in SML
it is impossible for map list to know which types α and β have been instantiated with!

If you try to do something that depends on α having a particular type, SML will infer a “less
polymorphic” type instead:

val unpoly_map_list = fn : (bool -> ’b) -> bool list -> ’b list

The fact that a parametrically polymorphic function cannot inspect its argument’s type means that
we can prove “parametricity properties”, such as:

If a function has type ∀α. (α → α), and it is applied to a value v of some type A, and
that application evaluates to a value, then the resulting value is exactly v.

Or, suppose a function has type ∀α.
(
(α ∗ α) → α

)
. It could return the first part of the pair, or

the second part. Could it do anything else?
Turning the question around (sideways?): What functions besides map list have map list’s

type?

3.2 Examples of ad hoc polymorphism

A common form of ad hoc polymorphism is operator overloading: in many languages, the + operator
works on more than one type of argument. For example, in SML, + works on both ints and reals
(though not on string, and not on one int and one real).

3.3 Polymorphism in untyped languages

Is Racket polymorphic? The answer depends on whether we take “type” in the (vague) definition
above to mean a static type (perhaps defined through typing rules), or whether we consider it more
informally, so that, say, 3 and #false in Racket are of different types, even though Racket has no
type system to stop you from compiling a program like (+ 3 #false).

• If we require “type” to mean a static type, then Racket is not polymorphic because, in a sense,
it has only one type: the type of “s-expressions”, which includes numbers, #true and #false,
functions (lambda), lists, and everything else.

This claim is sometimes phrased as “dynamic ‘typing’ is really just unityping”, a “unityped”
language being a (statically) typed language with only one (uni-) type. Thus, Carnegie Mellon
University’s Bob Harper:

4 2016/11/23



§3 Kinds of polymorphism

“Dynamic typing is but a special case of static typing, one that limits, rather than
liberates... Something can hardly be opposed to that of which it is but a trivial
special case.” (from a 2011 blog post)

• If we say that any precise organization of code and/or data into subcategories is “typing”, then
#true and #false can be called “booleans”, (lambda (x) x) can be called a “function”, and
so on. Then Racket is certainly polymorphic, because many functions that you can write in
Racket—for example, (lambda (x) x)—work on many different kinds of Racket “types”.

5 2016/11/23



§3 Kinds of polymorphism

4 Polymorphism in Fun

To add polymorphism to Fun, we need to add two new forms of type:

• Polymorphic types
∀a. B

which are read “for all [types] a, . . . ”.

• Type variables a, b, c, etc.

These new forms are meant to be used together. For example, the following will be the type of
the identity function (Lam x (Id x)).

∀a. (a→ a)

The main idea is that, whenever an expression has a polymorphic type, it can be instantiated by
“plugging in” different types. For example, if we plug in bool for a in the type above, we get

bool → bool

Similar to substitution-based evaluation, which substitutes a value v for (Id x) throughout an ex-
pression e [

v
/
x
]
e

we are substituting the type bool for the type variable a throughout a type:[
A
/
a
]
B[

bool
/
a
]
(a→ a) =

([
bool

/
a
]
a
) → ([

bool
/
a
]
a
)

= bool → bool

We’ll also need a new form of assumption in our contexts:

Γ ::= ∅ Empty context
| x : A, Γ Context Γ plus the assumption that variable x is of type A
| a type , Γ Context Γ plus the assumption that a is any type

4.1 Typing rules

a type, Γ ` e⇐ A

Γ ` (All a e) ⇐ ∀a. A Check-all
Γ ` e⇒ ∀b. B1

Γ ` (At e A) ⇒ [
A
/
b
]
B1

Synth-at

6 2016/11/23


