
CPSC 311: Definition of Programming Languages:
Assignment 6: Bidirectional Typing

Joshua Dunfield and Khurram A. Jafery
University of British Columbia

November 27, 2016

1 Logistics

You may work in teams of up to 2 on this assignment. (You can work individually. But we recommend that
you collaborate, mostly for your benefit, but—I’ll be honest—also for ours: there are many students taking
311, but not very many TAs, and working individually means one more assignment to mark. Repeating
this reminder for a6. Also, you can submit as a team even if you complete the assignment separately
and meet only to decide on a combined solution. We don’t particularly recommend that, but it’s still
one less assignment to mark, and you’ll almost certainly learn something from the other person’s
solution.)

You must include a README.txt file based on this template:

http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/assignments/support/README.txt

For your final submission, be sure you have replaced all of the “TODO”s in README.txt.

handin has not yet been set up for this assignment. When handin has been set up, we will make an
announcement on Piazza.

Download http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/assignments/a6.rkt

1.1 Important! (new in a3, still in a6)

If your code is rejected by “Check Syntax”, or the handin script can’t run your code, you will receive a mark
of 0 for the entire coding portion of the assignment.

So, if you get stuck on one problem, comment out the code that doesn’t work, and try to explain in
a comment what you were trying to do. Make sure that your final handin, at minimum, prints test
results—even if all the tests fail!

Problem 2 must be handed in using handin by 22:00 (10:00pm) on Tuesday, December 6, 2016.

Problem 1 must be in the box in X235 by 22:00 (10:00pm) on Tuesday, December 6, 2016.

1.2 Handin

You must turn in the coding part of the assignment using the command-line version of the handin program.

For handin, this assignment is called a6. Submit two files:

• a6.rkt

• README.txt

1 2016/11/27

http://www.ugrad.cs.ubc.ca/~cs311/2016W1/assignments/support/README.txt
http://www.ugrad.cs.ubc.ca/~cs311/2016W1/assignments/a6.rkt


§2 Syntax

If you are working in a team, submit only one set of files. If you have both run handin for a6 already,
have one person overwrite their handin with a directory containing only a file called please-mark-aaaaa

where aaaaa is the CS ugrad username of your partner.

Just a reminder, late assignments are not accepted (except for the “grace period” of a few minutes, which
you shouldn’t rely on), and (basically) no excuses will be entertained. So, hand in your assignments early
and often!

Avoid using DrRacket comment boxes, because handin is still afraid of them. Comments using “;” and “#|
. . . |#” are fine.

2 Syntax

2.1 Types

Concrete syntax
〈Type〉 ::= rat

| int

| pos

| bool

| {* 〈Type〉 〈Type〉}
| {-> 〈Type〉 〈Type〉. . .}

| unit

| {+ 〈Type〉 〈Type〉}

| {all 〈symbol〉 〈Type〉}
| 〈symbol〉
| {mu 〈symbol〉 〈Type〉}

Abstract syntax
Types A,B ::= rat

| int
| pos
| bool
| A ∗ B
| A→ B

| unit
| A+ B

| ∀a. A
| a

| µa. A

Sum types A+ B are new in this assignment. Sum types describe the Inl and Inr expressions from a4.

For example, all of the following expressions have the type bool+ rat.

(Inl (Bfalse))

(Inl (Btrue))

(Inr (Num −0.5))

(Inr (Num −2))

(Inr (Num 7))

The first two expressions, (Inl (Bfalse)) and (Inl (Btrue)), have type bool + rat because they are inl applied
to something of type bool. The other expressions have type bool + rat because they have inr applied to
something of type rat. The “L” in inl refers to the left-hand type bool in bool+ rat, and the “R” in inr refers to
the right-hand type rat in bool+ rat.

Sum types, along with the unit type unit, give us an alternative way to define booleans: Let

weird-bool = (unit+ unit)

Now, instead of writing (Btrue), we write (Inl (Unit)); instead of (Bfalse), we write (Inr (Unit)); and instead
of (Ite e e1 e2), we write (Sum-case e x1 e1 x2 e2). The variables x1 and x2 don’t matter—they will always
be (Unit), which carries no information, so we can’t do anything useful with x1 and x2.

2 2016/11/27



§2 Syntax

Polymorphic types ∀a. A were introduced in the lecture notes “lec-bidir-poly”.

Recursive types µa. A are new in this assignment. Unlike all our other types, there are no expression variants
specific to recursive types. Any expression form can have a recursive type. Recursive types capture the
recursive nature of data definitions. For example, a natural number is either zero, or the successor of a
natural number. The “either. . . or” part of this definition is captured by a sum type: we either have zero
(represented as (Inl (Unit))), or the successor of a natural number N (represented as (Inr N)). For example,
one is the successor of zero, so one is

(
Inr N

)
where N is zero, and zero is represented as (Inr (Unit)), so one

is represented as
(
Inr (Inl (Unit))

)
. Zero carries no further information, so we can express zero as the type

unit. So we want to say that

a natural number = unit︸︷︷︸
I’m zero

+ a natural number︸ ︷︷ ︸
I’m the successor of this number

This leaves the question of how to handle the recursive nature of this definition: natural numbers are being
defined in terms of natural numbers. We will do this using a recursive type. First, we will replace “a natural
number” with “nat”.

nat = unit︸︷︷︸
I’m zero

+ nat︸︷︷︸
I’m the successor of this number

Then we will do something similar to Rec expressions: we will bind a name and give the whole type that
name, similar to how (Rec u e) binds an identifier u that represents the whole expression (Rec u e).

µnat. (unit+ nat)

We can also use recursive types to define lists: a list of type A is either (Inl unit), representing the empty list,
or (Inr (Pair h t)) where h has type A, and t has type list-of-A. Following the pattern of nat, we get

µlist-of-A.
(

unit︸︷︷︸
I’m empty

+
(
A ∗ list-of-A

)︸ ︷︷ ︸
I’m a “cons” of anA and another list

)

2.2 Expressions

Concrete syntax

〈E〉 ::= ...
| {Unit}

| {Inl 〈E〉}
| {Inr 〈E〉}
| {Sum-case 〈E〉 〈symbol〉 〈E〉 〈symbol〉 〈E〉}
| {Anno 〈E〉 〈Type〉}
| {At 〈E〉 〈Type〉}
| {All 〈symbol〉 〈E〉}

Abstract syntax

Expressions e ::= ...
| (Unit)
| (Inl e)
| (Inr e)
| (Sum-case e x e x e)
| (Anno e A)
| (At e A)
| (All a e)

3 2016/11/27



§3 Evaluation semantics

3 Evaluation semantics

e ⇓ v Expression e evaluates to value v

(Num n) ⇓ (Num n)
Eval-num

e1 ⇓ v1 e2 ⇓ v2 v1 op v2 = v

(Binop op e1 e2) ⇓ v Eval-binop

(Btrue) ⇓ (Btrue)
Eval-true

(Bfalse) ⇓ (Bfalse)
Eval-false

e ⇓ (Btrue) eThen ⇓ v
(Ite e eThen eElse) ⇓ v Eval-ite-true

e ⇓ (Bfalse) eElse ⇓ v
(Ite e eThen eElse) ⇓ v Eval-ite-false

(Id x) free-variable-error
Eval-id

e1 ⇓ v1 [
v1
/
x
]
e2 ⇓ v2

(Let x e1 e2) ⇓ v2 Eval-let

[
eB

/
u
]
(Rec u eB) ⇓ v

(Rec u eB) ⇓ v Eval-rec

(Lam x eB) ⇓ (Lam x eB)
Eval-lam

e1 ⇓ (Lam x eB) e2 ⇓ v2 [
v2
/
x
]
eB ⇓ v

(App e1 e2) ⇓ v Eval-app-value

e1 ⇓ v1 e2 ⇓ v2
(Pair e1 e2) ⇓ (Pair v1 v2)

Eval-pair
e ⇓ (Pair v1 v2)

[
v2
/
x2

][
v1
/
x1

]
eBody ⇓ v

(Pair-case e x1 x2 eBody) ⇓ v Eval-pair-case

e ⇓ v
(Inl e) ⇓ (Inl v)

Eval-inl
e ⇓ v

(Inr e) ⇓ (Inr v)
Eval-inr

e ⇓ (Inl vL)
[
vL

/
xL

]
eL ⇓ v

(Sum-case e xL eL xR eR) ⇓ v Eval-sum-case-left
e ⇓ (Inr vR)

[
vR

/
xR

]
eR ⇓ v

(Sum-case e xL eL xR eR) ⇓ v Eval-sum-case-right

e ⇓ v
(Anno e A) ⇓ v Eval-anno

e ⇓ v
(All a e) ⇓ v Eval-all

e ⇓ v
(At e A) ⇓ v Eval-at

Figure 1 Evaluation rules

4 2016/11/27



§5 Subtyping

4 Type substitution

[
A
/
a
]
rat = rat[

A
/
a
]
int = int[

A
/
a
]
pos = pos[

A
/
a
]
bool = bool[

A
/
a
]
unit = unit[

A
/
a
](
B1 ∗ B2

)
=

([
A
/
a
]
B1

)
∗
([
A
/
a
]
B2

)[
A
/
a
](
B1→ B2

)
=

([
A
/
a
]
B1

) → ([
A
/
a
]
B2

)[
A
/
a
](
B1+ B2

)
=

([
A
/
a
]
B1

)
+
([
A
/
a
]
B2

)
[
A
/
a
]
a = A[

A
/
a
]
b = b if a 6= b[

A
/
a
]
(∀b. B) = ∀b.

([
A
/
a
]
B
)

if a 6= b[
A
/
a
]
(∀a. B) = (∀a. B)[

A
/
a
]
(µb. B) = µb.

([
A
/
a
]
B
)

if a 6= b[
A
/
a
]
(µa. B) = (µa. B)

5 Subtyping

A <: B Type A is a subtype of type B

A <: A
Sub-refl

A1 <: A2 A2 <: A3

A1 <: A3
Sub-trans

pos <: int
Sub-pos-int

int <: rat
Sub-int-rat

A1 <: B1 A2 <: B2

(A1 ∗A2) <: (B1 ∗ B2)
Sub-product

B1 <: A1 A2 <: B2

(A1→ A2) <: (B1→ B2)
Sub-arr

A1 <: B1 A2 <: B2

(A1+A2) <: (B1+ B2)
Sub-sum

[
(µa. A)

/
a
]
A <: B

(µa. A) <: B
Sub-mu-left

A <:
[
(µb. B)

/
b
]
B

A <: (µb. B)
Sub-mu-right

[
b
/
a
]
A <: B

(µa. A) <: (µb. B)
Sub-mu-both

Figure 2 Subtyping rules

5 2016/11/27



§6 Typing

6 Typing

Γ(x) = A

Γ ` (Id x) ⇒ A
Synth-var

Γ ` e⇒ A A <: B

Γ ` e⇐ B
Check-sub

Γ ` e⇐ A

Γ ` (Anno e A) ⇒ A
Synth-anno

Γ ` e1⇒ A→ B Γ ` e2⇐ A

Γ ` (App e1 e2) ⇒ B
Synth-app

x : A1, Γ ` e⇐ A2

Γ ` (Lam x e) ⇐ A1→ A2
Check-lam

u : A, Γ ` e⇐ A

Γ ` (Rec u e) ⇐ A
Check-rec

Γ ` e1⇒ A1 x : A1, Γ ` e2⇐ A

Γ ` (Let x e1 e2) ⇐ A
Check-let

Γ ` e1⇒ A1 x : A1, Γ ` e2⇒ A

Γ ` (Let x e1 e2) ⇒ A
Synth-let

n ∈ Z n ≥ 0
Γ ` (Num n) ⇒ pos

Synth-pos
n ∈ Z

Γ ` (Num n) ⇒ int
Synth-int

n ∈ Q
Γ ` (Num n) ⇒ rat

Synth-rat

op : A1 ∗A2→ B Γ ` e1⇐ A1 Γ ` e2⇐ A2

Γ ` (Binop op e1 e2) ⇒ B
Synth-binop

a type, Γ ` e⇐ A

Γ ` (All a e) ⇐ ∀a. A Check-all
Γ ` e⇒ ∀b. B1

Γ ` (At e A) ⇒ [
A
/
b
]
B1

Synth-at

Γ ` (Btrue) ⇒ bool
Synth-btrue

Γ ` (Bfalse) ⇒ bool
Synth-bfalse

Γ ` e⇐ bool Γ ` e1⇐ A Γ ` e2⇐ A

Γ ` (Ite e e1 e2) ⇐ A
Check-ite

Γ ` e1⇐ A1 Γ ` e2⇐ A2

Γ ` (Pair e1 e2) ⇐ (A1 ∗A2)
Check-pair

Γ ` e⇒ (A1 ∗A2) x1 : A1, x2 : A2, Γ ` eBody⇐ A

Γ ` (Pair-case e x1 x2 eBody) ⇐ A
Check-pair-case

Γ ` e1⇒ A1 Γ ` e2⇒ A2

Γ ` (Pair e1 e2) ⇒ (A1 ∗A2)
Synth-pair

Γ ` (Unit) ⇒ unit
Synth-unit

Γ ` e1⇐ A1

Γ ` (Inl e1) ⇐ (A1+A2)
Check-inl

Γ ` e2⇐ A2

Γ ` (Inr e2) ⇐ (A1+A2)
Check-inr

Γ ` e⇒ (A1+A2) x1 : A1, Γ ` e1⇐ B x2 : A2, Γ ` e2⇐ B

Γ ` (Sum-case e x1 e1 x2 e2) ⇐ B
Check-sum-case

Γ ` e⇐ [
(µa. A)

/
a
]
A

Γ ` e⇐ µa. A
Check-mu

Γ ` e⇒ µa. A

Γ ` e⇒ [
(µa. A)

/
a
]
A

Synth-mu

Figure 3 Bidirectional typing rules

6 2016/11/27



§7 Problems

7 Problems

Problem 1 is not a coding problem. Turn it in on paper in the box in room X235. You can print this part of
the assignment and write on it, or write out your answers separately. Be sure to write your name, student
number, and CS userid. If you are working with someone else, turn in one solution.

Student #1: Name Student ID# CS userid

Student #2: Name Student ID# CS userid

Problem 1: Un type sans lumière

Part 1a. Complete the following derivation.

Γ ` (Inl (Unit)) ⇐ µa. (unit+ a)

Γ ` (Inr (Inl (Unit))) ⇐ unit+ µa. (unit+ a)
Check-inr

f : ∀b.
(
µa. (b+ a) → pos

)
, ∅︸ ︷︷ ︸

Γ

` (Inr (Inl (Unit))) ⇐ µa. (unit+ a)
Check-mu

Part 1b. Complete the following derivation.

f : ∀b.
(
µa. (b+ a) → pos

)
, ∅︸ ︷︷ ︸

Γ

`
(
App

(
At (Id f) unit

) (
Inr (Inl (Unit))

)) ⇒

7 2016/11/27



§8 Bonus problems

Problem 2: Bidirectional typing

Part 2a. In a6.rkt, edit the functions check and/or inner-synth to implement the rule Check-sum-case
(Figure 3).

Part 2b. In a6.rkt, edit the functions check and/or synth to implement the rules Check-mu and Synth-mu
(Figure 3).

8 Bonus problems

Bonus problem X1: Intersection types

Recursive types µa.A are property types: they are not tied to a particular expression variant. Another example
of a property type is the intersection type, written A1 ∩ A2. If e has type A1 ∩ A2, that means that e has,
simultaneously, type A1 and type A2. For example, if we want to overload a function “plus” to work on pairs
of numbers (with the usual meaning of addition) and pairs of booleans (with the meaning “or”), then plus
would have the type (

(rat ∗ rat) → rat
)
∩
(
(bool ∗ bool) → bool

)
The “introduction rule” for intersection, like the rule Check-mu, works on any kind of expression:

Γ ` e⇐ A1 Γ ` e⇐ A2

Γ ` e⇐ (A1 ∩ A2)
Check-sect

The “elimination rules” for intersection also work on any kind of expression:

Γ ` e⇒ (A1 ∩ A2)
Γ ` e⇒ A1

Synth-sect-1
Γ ` e⇒ (A1 ∩ A2)

Γ ` e⇒ A2
Synth-sect-2

For example, assuming a function plus with the above type:

Γ = plus :
(
(rat ∗ rat) → rat

)
∩
(
(bool ∗ bool) → bool

)
, ∅

we can apply plus to a pair of Booleans by using rule Synth-sect-2:

Γ(plus) =
(
(rat ∗ rat) → rat

)
∩
(
(bool ∗ bool) → bool

)
Γ ` (Id plus) ⇒ (

(rat ∗ rat) → rat
)
∩
(
(bool ∗ bool) → bool

) Synth-var

Γ ` (Id plus) ⇒ (
(bool ∗ bool) → bool

) Synth-sect-2
Γ `

(
Pair (Bfalse) (Btrue)

) ⇐ bool ∗ bool

Γ `
(
App (Id plus)

(
Pair (Bfalse) (Btrue)

)) ⇒ bool
Synth-app

Part X1a. Copy a6.rkt to bonus.rkt. Implement Check-sect, Synth-sect-1, and Synth-sect-2. You may want
to read up on backtracking search algorithms.

Part X1b. Design and implement subtyping rules for intersection types.

8 2016/11/27


	Logistics
	Important! (new in a3, still in a6)
	Handin

	Syntax
	Types
	Expressions

	Evaluation semantics
	Type substitution
	Subtyping
	Typing
	Problems
	Bonus problems

