
CPSC 311: Definition of Programming Languages:
Assignment 5

Joshua Dunfield
University of British Columbia

November 20, 2016

1 Logistics

You may work in teams of up to 2 on this assignment. (You can work individually. But we recommend that
you collaborate, mostly for your benefit, but—I’ll be honest—also for ours: there are many students taking
311, but not very many TAs, and working individually means one more assignment to mark. Repeating
this reminder for a5. Also, you can submit as a team even if you complete the assignment separately
and meet only to decide on a combined solution. We don’t particularly recommend that, but it’s still
one less assignment to mark, and you’ll almost certainly learn something from the other person’s
solution.)

You must include a README.txt file based on this template:

http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/assignments/support/README.txt

For your final submission, be sure you have replaced all of the “TODO”s in README.txt.

handin has not yet been set up for this assignment. When handin has been set up, we will make an
announcement on Piazza.

Download http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/assignments/a5.rkt

1.1 Important! (new in a3, still in a5)

If your code is rejected by “Check Syntax”, or the handin script can’t run your code, you will receive a mark
of 0 for the entire coding portion of the assignment.

So, if you get stuck on one problem, comment out the code that doesn’t work, and try to explain in
a comment what you were trying to do. Make sure that your final handin, at minimum, prints test
results—even if all the tests fail!

Problems 3 and 4 must be handed in using handin by 01:00 (1:00am) on Friday, November 25, 2016.

Problems 1 and 2 must be in the box in X235 by 8:45 a.m. on Friday, November 25, 2016.

1.2 Handin

You must turn in the coding part of the assignment using the command-line version of the handin program.

For handin, this assignment is called a5. Submit two files:

• a5.rkt

• README.txt

1 2016/11/20

http://www.ugrad.cs.ubc.ca/~cs311/2016W1/assignments/support/README.txt
http://www.ugrad.cs.ubc.ca/~cs311/2016W1/assignments/a5.rkt


§1 Logistics

If you are working in a team, submit only one set of files. If you have both run handin for a4 already,
have one person overwrite their handin with a directory containing only a file called please-mark-aaaaa

where aaaaa is the CS ugrad username of your partner.

Just a reminder, late assignments are not accepted (except for the “grace period” of a few minutes, which
you shouldn’t rely on), and (basically) no excuses will be entertained. So, hand in your assignments early
and often!

Avoid using DrRacket comment boxes, because handin is still afraid of them. Comments using “;” and “#|
. . . |#” are fine.

2 2016/11/20



§2 Syntax

2 Syntax

2.1 Types

Concrete syntax
〈Type〉 ::= rat

| int

| pos

| bool

| {* 〈Type〉 〈Type〉}
| {-> 〈Type〉 〈Type〉. . .}
| {ref 〈Type〉}
| {record 〈FieldTypes〉. . .}

〈FieldTypes〉 ::= {〈id〉 〈id〉. . . 〈Type〉}

Abstract syntax
Types A,B ::= rat

| int
| pos
| bool
| A ∗ B
| A→ B
| ref A
| record FldType1, · · · , FldTypen n ≥ 0

FieldType FldType ::= f : A

The record type is new in this assignment. A record type has a list of zero or more occurrences of 〈FieldTypes〉.
Each occurrence of 〈FieldTypes〉 declares the type of one or more fields (the 〈id〉s), each of type 〈Type〉.

For example, the following is concrete syntax for the type of a record with three fields: a positive integer
route-number, and Booleans electric and express:

{record {route-number Pos} {electric express Bool}}

The corresponding abstract syntax is

(Record route-number : pos, electric : bool, express : bool)

where route-number : pos is a FldType.

2.2 Expressions

Concrete syntax
〈E〉 ::= ...

| {Record 〈Field〉. . .}
| {Dot 〈E〉 〈id〉}

〈Fields〉 ::= {〈id〉 〈E〉}

Abstract syntax
Expressions e ::= ...

| (Record Field1, . . . , Fieldn)
| (Dot e f)

Fields Field ::= f=e

An example expression with the above record type is

{Record {express Bfalse} {route-number 14} {electric Btrue}}

If the identifier r is bound to the above expression, then

{Dot e route-number}

evaluates to 14 (in abstract syntax, (Num 14)).

3 2016/11/20



§3 Environment-based semantics

3 Environment-based semantics

In addition to new features like records, rules from previous assignments have been updated to be environment-
based, rather than substitution-based.

env;S1 ` e ⇓ v;S2 Under environment env and initial store S1,
expression e evaluates to value v with new store S2

env; S ` (Num n) ⇓ (Num n); S
SEnv-num

env; S ` e1 ⇓ v1; S1 env; S1 ` e2 ⇓ v2; S2 v1 op v2 = v

env; S ` (Binop op e1 e2) ⇓ v; S2 SEnv-binop

env; S ` (Btrue) ⇓ (Btrue); S
SEnv-true

env; S ` (Bfalse) ⇓ (Bfalse); S
SEnv-false

env; S ` e ⇓ (Btrue); S1 env; S1 ` eThen ⇓ v; S2
env; S ` (Ite e eThen eElse) ⇓ v; S2 SEnv-ite-true

env; S ` e ⇓ (Bfalse); S1 env; S1 ` eElse ⇓ v; S2
env; S ` (Ite e eThen eElse) ⇓ v; S2 SEnv-ite-false

lookup(env, x) = e env; S ` e ⇓ v; S1
env; S ` (Id x) ⇓ v; S1 SEnv-id

env; S ` e1 ⇓ v1; S1 x=v1, env; S1 ` e2 ⇓ v2; S2
env; S ` (Let x e1 e2) ⇓ v2; S2 SEnv-let

env; S ` (Lam x eB) ⇓ (Clo env (Lam x eB)); S
SEnv-lam

envold; S1 ` e ⇓ v; S2
env; S1 ` (Clo envold e) ⇓ v; S2 SEnv-clo

env; S ` e1 ⇓ (Clo envold (Lam x eB)); S1 env; S1 ` e2 ⇓ v2; S2 x=v2, envold ` eB ⇓ v; S2
env; S ` (App e1 e2) ⇓ v; S2 SEnv-app-value

(
Env-Rec E (u=(Clo E eB), env)

)
; S1 ` eB ⇓ v; S2 E /∈ env

env; S1 ` (Rec u eB) ⇓ v; S2 SEnv-rec

env;S ` (Location `) ⇓ (Location `);S
SEnv-location

` fresh for S1 env;S ` e ⇓ v;S1
env;S ` (Ref e) ⇓ (Location `); `.v, S1

SEnv-ref

env;S ` e ⇓ (Location `);S2 lookup-loc(S2, `) = v
env;S ` (Deref e) ⇓ v;S2 SEnv-deref

env;S ` e1 ⇓ (Location `);S1 env;S1 ` e2 ⇓ v2;S2 update-loc(S2, `, v2) = S3
env;S ` (Setref e1 e2) ⇓ v2;S3 SEnv-setref

env;S1 ` e ⇓ v;S2 ∅ ` v : A
env;S1 ` (Downcast A e) ⇓ v;S2 SEnv-downcast

n ≥ 0 env;S ` e1 ⇓ v1;S1 · · · env;S(n− 1) ` en ⇓ vn;Sn
env;S ` (Record f1=e1, . . . , fn=en) ⇓ (Record f1=v1, . . . , fn=vn);Sn

SEnv-record

env;S1 ` e ⇓ (Record f1=v1, . . . , fn=vn);S2 (f=v) ∈ {f1=e1, . . . , fn=vn}

env;S1 ` (Dot e f) ⇓ v;S2 SEnv-dot

n ≥ 1 env;S ` e1 ⇓ v1;S1 · · · env;S(n− 1) ` en ⇓ vn;Sn
env;S ` (Begin e1 · · · en) ⇓ vn;Sn SEnv-begin

Figure 1 Evaluation rules

4 2016/11/20



§4 Subtyping

4 Subtyping

A <: B Type A is a subtype of type B

A <: A
Sub-refl

A1 <: A2 A2 <: A3

A1 <: A3
Sub-trans

pos <: int
Sub-pos-int

int <: rat
Sub-int-rat

A1 <: B1 A2 <: B2

(A1 ∗A2) <: (B1 ∗ B2)
Sub-product

B1 <: A1 A2 <: B2

(A1→ A2) <: (B1→ B2)
Sub-arr

A <: B B <: A

(ref A) <: (ref B)
Sub-ref

Figure 2 Subtyping rules; for record subtyping, see Problem 4

5 2016/11/20



§5 Typing

5 Typing

Γ ` e : A Under assumptions Γ , expression e has type A

Γ ` e : A A <: B

Γ ` e : B
Type-sub

Γ(x) = A

Γ ` (Id x) : A
Type-var

n ∈ Z n ≥ 0
Γ ` (Num n) : pos

Type-pos
n ∈ Z

Γ ` (Num n) : int
Type-int

n ∈ Q
Γ ` (Num n) : rat

Type-rat

op : A1 ∗A2→ B Γ ` e1 : A1 Γ ` e2 : A2
Γ ` (Binop op e1 e2) : B

Type-binop

Γ ` (Bfalse) : bool
Type-false

Γ ` (Btrue) : bool
Type-true

Γ ` e : bool Γ ` eThen : A Γ ` eElse : A
Γ ` (Ite e eThen eElse) : A

Type-ite

x : A, Γ ` eBody : B

Γ ` (Lam x A eBody) : A→ B
Type-lam

Γ ` e1 : A→ B Γ ` e2 : A
Γ ` (App e1 e2) : B

Type-app

Γ ` e1 : A1 Γ ` e2 : A2
Γ ` (Pair e1 e2) : A1 ∗A2

Type-pair
Γ ` e : A1 ∗A2 x1 : A1, x2 : A2, Γ ` eBody : B

Γ ` (Pair-case e x1 x2 eBody) : B
Type-pair-case

Γ ` e : A x : A, Γ ` eBody : B

Γ ` (Let x e eBody) : B
Type-let

u : B, Γ ` e : B
Γ ` (Rec u B e) : B

Type-rec

Γ ` e : A
Γ ` (Ref A e) : ref A

Type-ref
Γ ` e : ref A

Γ ` (Deref e) : A
Type-deref

Γ ` e1 : ref A Γ ` e2 : A
Γ ` (Setref e1 e2) : A

Type-setref

A <: B Γ ` e : B
Γ ` (Downcast A e) : A

Type-downcast

n ≥ 0 Γ ` e1 : A1 · · · Γ ` en : An

Γ ` (Record Fld1=e1, . . . , Fldn=en) : (record (f1 : A1), . . . , (fn : An))
Type-record

Γ ` e : (record FldType1, . . . , FldTypen) (x : A) ∈ {FldType1, . . . , FldTypen}

Γ ` (Dot e x) : A
Type-dot

n ≥ 1 Γ ` e1 : A1 · · · Γ ` en : An

Γ ` (Begin e1 · · · en) : An
Type-begin

Γ ` eG : bool Γ ` eB : A

Γ ` (While eG eB) : bool
Type-while

Figure 3 Typing rules, including records

6 2016/11/20



§6 Problems

6 Problems

Problems 1–2 are not coding problems. Turn them in on paper in the box in room X235. You can print this
part of the assignment and write on it, or write out your answers separately. Be sure to write your name,
student number, and CS userid. If you are working with someone else, turn in one solution.

Student #1: Name Student ID# CS userid

Student #2: Name Student ID# CS userid

Problem 1: All Turned Around

Part 1a: Derivation tree

Consider this proposed subtyping rule that purportedly allows programmers to not worry about the order in
which they write a pair:

A1 <: B1 A2 <: B2

(A1 ∗A2) <: (B2 ∗ B1)
??Sub-twist

Use the above rule (and the subtyping rules in Figure 2) to complete the following derivation:

(int ∗ bool) <: (bool ∗ rat)

Part 1b: “If it can do anything, he thought, then let it do a flip.”

Subtyping rules should preserve a “substitution principle”: roughly, if A <: B then an expression expecting a
B must accept an A.

Find an expression eBody such that evaluating

ePaircase =
(
Pair-case

(
Pair (Num −3) (Bfalse)

)
x1 x2 eBody

)
causes an error, even though ePaircasewould pass the type checker (supposing that ??Sub-twist were used).

eBody =

7 2016/11/20



§6 Problems

Problem 2: While

Consider the following environment-based evaluation rules for a while construct. The first expression, eG,
is the condition or guard; the second expression is the body of the while.

env ` eG ⇓ (Btrue) env ` eBody ⇓ v1 env ` (While eG eBody) ⇓ v2
env ` (While eG eBody) ⇓ v2 Env-while-true

env ` eG ⇓ (Bfalse)

env ` (While eG eBody) ⇓ (Bfalse)
Env-while-false

In early versions of Fun, this while construct would have been completely useless. In those languages, an
expression e that evaluates to a value would always evaluate to the same value. Assuming eG has type bool,
if eG converges then it evaluates to either (Btrue) or (Bfalse). If eG evaluates to (Btrue), it will evaluate to
(Btrue) again the second time around, so the While would always loop forever. If eG evaluates to (Bfalse),
then the loop doesn’t execute at all.

However, While might be useful in the version of Fun on a4, because Par and Choose allow a single expression
to evaluate to different values.

Now that we have a store, While is more clearly useful, because we can use Setref to change the state.

(Having (While (Bfalse) eBody) evaluate to (Bfalse) is arbitrary. We would have liked to have it evaluate to
unit, but we were trying to keep the language on this assignment from getting too big.)

Part 2a. Design environment-based rules with a store that correspond to Env-while-true and Env-while-
false.

env;S1 ` (While eG eBody) ⇓ v2; SEnv-while-true

env;S1 ` (While eG eBody) ⇓ (Bfalse);
SEnv-while-false

Part 2b. Complete the following derivations.

x : (Location `)︸ ︷︷ ︸
env

; `.(Num 2)︸ ︷︷ ︸
S

`
(
Binop < (Num 1) (Deref (Id x))

) ⇓ ;
SEnv-binop

x : (Location `)︸ ︷︷ ︸
env

; `.(Num 2)︸ ︷︷ ︸
S

`
(
Setref (Id x) (Num 0)

) ⇓ ;
SEnv-setref

8 2016/11/20



§6 Problems

Problem 3: Subtyping

For records, depth subtyping says that a record type whose fields are F1, . . . , Fn is a subtype of another with
the same fields if the field types are “pointwise” subtypes. For example:

(record x : pos, y : int) <: (record x : int, y : rat)

because (for the field x) pos <: int, and (for the field y) int <: rat.

If you think of a pair (Pair e1 e2) as a record with two (anonymous) fields, depth subtyping for records
behaves like the rule Sub-product for pair types.

In width subtyping, a record type with fields F is a subtype of a record type with fields G if F is a superset of
G. For example, a record with 3 fields x : int, y : int, z : int is a subtype of a record with 2 fields x : int, y : int.

You can think of the record with 3 fields as a subclass of the record with 2 fields: it “inherits” the fields x and
y, but adds a new field z.

The following two rules do depth and width subtyping. Sub-record handles the case where the supertype
has exactly one field. Implement these rules by extending the function subtype? in a5.rkt.

there exists (f : A) ∈ {f1 : A1, · · · , fn : An} : f = g A <: B

(record f1 : A1, · · · , fn : An) <: (record g : B)
Sub-record

m ≥ 0 A <: (record g1 : B1) · · · A <: (record gm : Bm)

A <: (record g1 : B1, · · · , gm : Bm)
Sub-record-split

Note the condition m ≥ 0: the grammar allows a Record with zero fields, and so does Sub-record-split!

0 ≥ 0 [zero premises here]
A <: (record )

Sub-record-split

Note: You can assume there are no duplicate field names, that is, subtype? will never be called with a type
like (record x : int, x : bool).

Hint: The function get-field-type is useful for implementing Sub-record.

Problem 4: Begin and While

Add code to env-interp to implement (1) the rule SEnv-begin and (2) the rules for While from Problem 2.

9 2016/11/20


	Logistics
	Important! (new in a3, still in a5)
	Handin

	Syntax
	Types
	Expressions

	Environment-based semantics
	Subtyping
	Typing
	Problems

