
CPSC 311: Definition of Programming Languages:
Assignment 4: Stepping

Joshua Dunfield and Khurram A. Jafery
University of British Columbia

November 1, 2016

1 Logistics

You may work in teams of up to 2 on this assignment. (You can work individually. But we recommend that
you collaborate, mostly for your benefit, but—I’ll be honest—also for ours: there are many students taking
311, but not very many TAs, and working individually means one more assignment to mark. Repeating
this reminder for a4. Also, you can submit as a team even if you complete the assignment separately
and meet only to decide on a combined solution. We don’t particularly recommend that, but it’s still
one less assignment to mark, and you’ll almost certainly learn something from the other person’s
solution.)

You must include a README.txt file based on this template:

http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/assignments/support/README.txt

For your final submission, be sure you have replaced all of the “TODO”s in README.txt.

handin has not yet been set up for this assignment. When handin has been set up, we will make an
announcement on Piazza.

Download http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/assignments/a4.rkt

1.1 Important! (new in a3, still in a4)

If your code is rejected by “Check Syntax”, or the handin script can’t run your code, you will receive a mark
of 0 for the entire coding portion of the assignment.

So, if you get stuck on one problem, comment out the code that doesn’t work, and try to explain in
a comment what you were trying to do. Make sure that your final handin, at minimum, prints test
results—even if all the tests fail!

This assignment is due at 22:00 (10:00pm) on Saturday, November 12, 2016.

1.2 Handin

You must turn in the coding part of the assignment using the command-line version of the handin program.

For handin, this assignment is called a4. Submit two files:

• a4.rkt

• README.txt

1 2016/11/1

http://www.ugrad.cs.ubc.ca/~cs311/2016W1/assignments/support/README.txt
http://www.ugrad.cs.ubc.ca/~cs311/2016W1/assignments/a4.rkt

§2 Overview

If you are working in a team, submit only one set of files. If you have both run handin for a4 already,
have one person overwrite their handin with a directory containing only a file called please-mark-aaaaa

where aaaaa is the CS ugrad username of your partner.

Just a reminder, late assignments are not accepted (except for the “grace period” of a few minutes, which
you shouldn’t rely on), and (basically) no excuses will be entertained. So, hand in your assignments early
and often!

Avoid using DrRacket comment boxes, because handin is still afraid of them. Comments using “;” and “#|
. . . |#” are fine.

2 Overview

• Problems 1 and 2 are about small-step semantics; hand in your solution on paper.

• Problems 3–5 are also about small-step semantics; hand in your solution using handin (see above).

• There is a bonus problem.

2 2016/11/1

§3 Substitution

3 Substitution [
e2
/
x
]
(Num n) = (Num n)[

e2
/
x
]
(Leaf A) = (Leaf A)[

e2
/
x
]
(Branch eKey eL eR) = (Branch

[
e2
/
x
]
eKey

[
e2
/
x
]
eL

[
e2
/
x
]
eR)[

e2
/
x
]
(Tree-case e eLeaf x1 x2 x3 eBranch) =

(
Tree-case

[
e2
/
x
]
e
[
e2
/
x
]
eLeaf x1 x2 x3 eBranch

)
if x = x1 or x = x2 or x = x3[

e2
/
x
]
(Tree-case e eLeaf x1 x2 x3 eBranch) =

(
Tree-case

[
e2
/
x
]
e
[
e2
/
x
]
eLeaf x1 x2 x3

[
e2
/
x
]
eBranch

)
if x 6= x1 and x 6= x2 and x 6= x3[

e2
/
x
]
(Id x) = e2[

e2
/
x
]
(Id y) = (Id y) if x 6= y[

e2
/
x
]
(Lam x A eB) = (Lam x A eB)[

e2
/
x
]
(Lam y A eB) = (Lam y A

[
e2
/
x
]
eB)

if x 6= y[
e2
/
x
]
(App eFun eArg) =

(
App

[
e2
/
x
]
eFun

[
e2
/
x
]
eArg

)[
e2
/
x
]
(Binop op eL eR) =

(
Binop op

[
e2
/
x
]
eL

[
e2
/
x
]
eR

)[
e2
/
x
]
(Pair eL eR) =

(
Pair

[
e2
/
x
]
eL

[
e2
/
x
]
eR

)[
e2
/
x
]
(Inl eL) =

(
Inl

[
e2
/
x
]
eL

)[
e2
/
x
]
(Inr eR) =

(
Inr

[
e2
/
x
]
eR

)
[
e2
/
x
]
(Bfalse) = (Bfalse)[

e2
/
x
]
(Btrue) = (Btrue)[

e2
/
x
]
(Ite e eThen eElse) =

(
Ite

[
e2
/
x
]
e
[
e2
/
x
]
eThen

[
e2
/
x
]
eElse

)
[
e2
/
x
]
(Let x e eB) =

(
Let x

[
e2
/
x
]
e eB

)[
e2
/
x
]
(Let y e eB) =

(
Let y

[
e2
/
x
]
e
[
e2
/
x
]
eB

)
if x 6= y[

e2
/
x
]
(Pair-case e x1 x2 eB) =

(
Pair-case

[
e2
/
x
]
e x1 x2 eB

)
if x = x1 or x = x2[

e2
/
x
]
(Pair-case e x1 x2 eB) =

(
Pair-case

[
e2
/
x
]
e x1 x2

[
e2
/
x
]
eB

)
if x 6= x1 and x 6= x2[

e2
/
x
]
(Rec x A eB) = (Rec x A eB)[

e2
/
x
]
(Rec y A eB) = (Rec y A

[
e2
/
x
]
eB) if x 6= y[

e2
/
x
]
(Unit) = (Unit)[

e2
/
x
]
(Par eL eR) = (Par

[
e2
/
x
]
eL

[
e2
/
x
]
eR)[

e2
/
x
]
(Choose eL eR) = (Choose

[
e2
/
x
]
eL

[
e2
/
x
]
eR)[

e2
/
x
]
(Sum-case e xL eL xR eR) =

(
Sum-case

[
e2
/
x
]
e xL eL ′ xR eR ′)

where eL ′ = eL if x = xL

eL ′ =
[
e2
/
x
]
eL if x 6= xL

eR ′ = eR if x = xR

eR ′ =
[
e2
/
x
]
eR if x 6= xR[

e2
/
x
]
(Inl-case e xL eL) =

(
Inl-case

[
e2
/
x
]
e xL eL ′)

where eL ′ = eL if x = xL

eL ′ =
[
e2
/
x
]
eL if x 6= xL[

e2
/
x
]
(Inr-case e xR eR) =

(
Inr-case

[
e2
/
x
]
e xR eR ′)

where eR ′ = eR if x = xR

eR ′ =
[
e2
/
x
]
eR if x 6= xR

3 2016/11/1

§3 Substitution

Definitions of values and evaluation contexts:

Values v ::= (Num n)
| (Lam x e)
| (Pair v v)
| (Leaf)
| (Branch v v v)
| (Unit)
| (Inl v)
| (Inr v)

Evaluation contexts C ::= []

| (Binop op C e)
| (Binop op v C)
| (App C e)
| (App v C)
| (Let x C e)
| (Ite C e e)

| (Pair C e)
| (Pair v C)
| (Pair-case C x x e)

| (Branch C e e)
| (Branch v C e)
| (Branch v v C)
| (Tree-case C e x x x e)

| (Inl C)
| (Inr C)
| (Sum-case C x e x e)
| (Inl-case C x e)
| (Inr-case C x e)

| (Par C e)
| (Par e C)

Figure 1 Values and evaluation contexts

4 2016/11/1

§3 Substitution

e1 −→ e2 Expression e1 steps to e2

Reduction rules:

v1 op v2 = v

(Binop op v1 v2) −→ v
Step-binop

(Let x v1 e2) −→ [
v1
/
x
]
e2

Step-let

(
App (Lam x eB) v

)
−→ [

v
/
x
]
eB

Step-app-value
(Rec u e) −→ [

(Rec u e)
/
u
]
e

Step-rec

(Ite (Btrue) eThen eElse) −→ eThen
Step-ite-true

(Ite (Bfalse) eThen eElse) −→ eElse
Step-ite-false

(Pair-case (Pair v1 v2) x1 x2 eBody) −→ [
v2
/
x2
][
v1
/
x1
]
eBody

Step-pair-case

(Tree-case (Leaf) eLeaf xK xL xR eBranch) −→ eLeaf
Step-tree-case-leaf

(Tree-case (Branch vK vL vR) eLeaf xK xL xR eBranch) −→ [
vR
/
xR
][
vL
/
xL
][
vK
/
xK
]
eBranch

Step-tree-case-branch

(Inl-case (Inl v) xL eL) −→ [
v
/
xL
]
eL

Step-inl-case
(Inr-case (Inr v) xR eR) −→ [

v
/
xR
]
eR

Step-inr-case

−→ (Sum-case (Inl v) xL eL xR eR)[
v
/
xL
]
eL

Step-sum-case-left

−→ (Sum-case (Inr v) xL eL xR eR)[
v
/
xR
]
eR

Step-sum-case-right

(Par v1 e2) −→ v1
Step-par-left

(Par e1 v2) −→ v2
Step-par-right

(Choose e1 e2) −→ e1
Step-choose-left

(Choose e1 e2) −→ e2
Step-choose-right

Context rule:

e −→ e ′

C
[
e
]
−→ C[e ′] Step-context

Figure 2 Small-step semantics

5 2016/11/1

§4 Problems

4 Problems

IMPORTANT: Read this before you start coding!

• Don’t worry about making your code fast; clarity and correctness are much more important.

You must implement code that follows the rules; you should also make your code similar to the rules.

Problems 1–2 are not coding problems. Turn them in on paper in the box in room X235. You can print this
part of the assignment and write on it, or write out your answers separately. Be sure to write your name,
student number, and CS userid. If you are working with someone else, turn in one solution.

Student #1: Name Student ID# CS userid

Student #2: Name Student ID# CS userid

Problem 1: Small steps to big steps

The small-step semantics in Figure 2 has two reduction rules for Sum-case: Step-sum-case-left and Step-
sum-case-right. Write the corresponding big-step rule(s) for Sum-case below. You do not need to name the
rule(s).

e ⇓ v Expression e evaluates to value v

6 2016/11/1

§4 Problems

Problem 2: One Step Up

For each of the following expressions, attempt to evaluate it using the small-step semantics provided above.

• It is possible that the expression converges to a value, i.e. after taking a finite number of steps, the
expression reduces to a value.

• It is possible that the expression diverges, i.e. no progress is made by taking any further steps as the
size of the program never reduces—in this case, stop after a few steps and briefly explain why the
expression diverges; or

• It is possible that stepping gets stuck, i.e., the expression is not a value, and there is no rule that you
could apply to reduce the expression any further—in this case, stop when no further steps can be taken
and briefly explain why.

Underline the subexpression being currently reduced in a given step, and beneath the line write the name of
the reduction rule you’re applying. While reducing the expression, you may need to substitute; it is best to
write only the final result of substitution within the step.

Part 2a:(
App

(
Lam x

(
App

(
App (Lam x (Par (Unit) (Lam y (Id x)))) (Num 2)

) (
Id x

))) (
Num 1

))

−→

Part 2b:(
Rec x

(
Rec y (Choose (Id x) (Id y))

))
−→

7 2016/11/1

§4 Problems

Problem 2: One Step Up, continued

Part 2c:(
Inr-case

(
Sum-case (Inr (Btrue)) x1

(
Inr (Id x1)

)
x2
(
Inr (Inr (Id x2))

))
x
(
Id x

))
−→

8 2016/11/1

§4 Problems

Problem 3: Tangled Up in Sums

In a4.rkt we have implemented a small-step interpreter and added several new features: “angelic nonde-
terminism” Par (better known as parallelism), “demonic nondeterminism” Choose, sum types, and a unit
type. Recall that a Pair in Fun is like a define-type that has one variant, with two arguments; sum types are
like define-types that have two variants, each with one argument.

Sums are introduced by the expressions Inl and Inr. These correspond to the variant names in a define-type.

Sums can be eliminated in several ways:

• The expression Sum-case is like a type-case with two branches, one for Inl and one for Inr.

• The expression Inl-case is somewhat like a type-case with only one branch, for Inl. Trying to step an
Inl-case on an Inr will get stuck.

• The expression Inr-case is somewhat like a type-case with only one branch, for Inr. Trying to step an
Inr-case on an Inl will get stuck.

You can think of Inl-case and Inr-case as a type-case with a “missing else”. Racket/PLAI does not let you
write such a thing, but many languages with features similar to type-case (including Haskell, Standard ML,
and OCaml) do allow this.

The unit type is a type with only one value: (Unit).

Small-step semantics was introduced in lec-smallstep, with a few more features added in lec-smallstep-2:

http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/notes/lec-smallstep.pdf

http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/notes/lec-smallstep-2.pdf

In the function reduce, implement the rules Step-sum-case-inl, Step-sum-case-inr, Step-inl-case, and Step-
inr-case from Figure 2.

As in previous assignments, you may find it helpful to look at how we have implemented similar rules, such
as Step-pair-case and Step-tree-case-branch.

We already wrote code in step that looks inside evaluation contexts for sum expressions (Inl, Inr, Sum-case,
Inl-case, Inr-case).

Problem 4: Angels and Demons

This problem is about nondeterminism. (“Demonic nondeterminism” already made an appearance on the
practice midterm.)

In the function reduce, implement the rules Step-par-left, Step-par-right, Step-choose-left, and Step-choose-
right; see Figure 2.

The rules for Choose overlap, so you have a choice about which half of a Choose to step. To resolve this
choice, call the Racket function random with argument 2. This will (pseudo-)randomly return 0 or 1. If it
returns 0, do Step-choose-left; if it returns 1, do Step-choose-right.

You’re now done with Choose! However, you aren’t done with this problem, because the rule Step-context
depends on the definition of evaluation contexts, which includes productions for Par. So:

In the function step, implement the two additional possibilities for C. Similar to Choose, resolve overlapping
possibilities by calling random. It’s often a good idea to try to follow the pattern of the existing branches, and
that should hold for this problem as well.

9 2016/11/1

http://www.ugrad.cs.ubc.ca/~cs311/2016W1/notes/lec-smallstep.pdf
http://www.ugrad.cs.ubc.ca/~cs311/2016W1/notes/lec-smallstep-2.pdf

§4 Problems

Problem 5: A Problem Has No Name

Search for “Problem 5” in a4.rkt to see where to write your solutions.

Problem 5a: Find Fun expressions e1 and e2 such that stepping

(Par e1 e2)

always converges (results in a value), but repeatedly stepping

(Choose e1 e2)

does not always converge. Or, explain why no such expressions exist.

Problem 5b: Find Fun expressions e3 and e4 such that repeatedly stepping

(Choose e3 e4)

always converges (results in a value), but repeatedly stepping

(Par e3 e4)

does not always converge. Or, explain why no such expressions exist.

10 2016/11/1

§5 Bonus problems

5 Bonus problems

This bonus problem is to be handed in on paper, attached to your solution for Problems 1–2.

Warning! Some bonus problems may be unsolvable.

Bonus problem X1: Seems random. . .

In Problem 4, the rules and definitions didn’t require you to call random; you had to do that because we told
you to, in the problem text.

Since definitions in English can be ambiguous, it would be advantageous to specify this using precise tech-
niques such as rules, equations (like the definition of substitution), and BNFs (like the definitions of values
and evaluation contexts).

Modify the dynamic semantics of the language in this assignment so that any implementation that satisfies
your semantics must randomly choose between alternatives (for Choose and Par).

For simplicity, you can ignore pairs, trees, and sums.

Hint: Just as we assumed some definition of addition n1 + n2 when we defined the dynamic semantics of
Add, you can assume you have a random number generator function RNG such that

RNG(m) = 〈m ′, b〉

where m is an integer seed, m ′ is the “new” seed, and b is a random bit (either 0 or 1). The idea is that,
starting from some m0, you feed the new seed back into the random number generator:

• The first time you need to randomly choose, call RNG(m0), which gives 〈m1, b1〉. Use b1 to decide
which alternative to choose.

• The second time you need to randomly choose, call RNG(m1), which gives 〈m2, b2〉. Use b2 to decide
which alternative to choose.

• The third time you need to randomly choose, call RNG(m2), which gives 〈m3, b3〉. . .

Since RNG is a mathematical function, for any given m you will always get the same pair of m ′ and b back,
but different m will (pseudo-randomly) give different b.

In addition to being allowed to change the rules, you can change the judgment forms themselves! For
example, you could add meta-variables to e1 −→ e2.

11 2016/11/1

	Logistics
	Important! (new in a3, still in a4)
	Handin

	Overview
	Substitution
	Problems
	Bonus problems

