
CPSC 311 2016W1 Assignment 3 - Solution for Problem 1

Problem 1: Typing Derivations

(a)

Γ(f) = num→ bool
Γ ` (Id f) : num→ bool

Type-var
Γ(n) = num

Γ ` (Id n) : num
Type-var

n : num, f : num→ bool, ∅︸ ︷︷ ︸
Γ

` (App (Id f) (Id n)) : bool
Type-app

Notes:

• In the above derivation, as we specified what Γ is defined to be, we are allowed to refer to it
throughout the derivation. We could have chosen not to do that, and instead write out the
typing context everywhere:

(n : num, f : num→ bool, ∅) (f) = num→ bool
n : num, f : num→ bool, ∅ ` (Id f) : num→ bool

Type-var
(n : num, f : num→ bool, ∅) (n) = num

n : num, f : num→ bool, ∅ ` (Id n) : num
Type-var

n : num, f : num→ bool, ∅ ` (App (Id f) (Id n)) : bool
Type-app

• But we must be careful not to change and redefine Γ midway through a typing derivation.
Although it wasn’t needed for this question, we can specify multiple typing contexts by
indexing on them i.e. define different typing contexts as Γ0, Γ1, Γ2, and so on.

(b)

X
n : num, f : num→ bool, ∅ ` (App (Id f) (Id n)) : bool

f : num→ bool, ∅ ` (Lam n num (App (Id f) (Id n))) : num→ bool
Type-lam

∅ ` (Rec f num→ bool (Lam n num (App (Id f) (Id n)))) : num→ bool
Type-rec

Notes:

• We derive the premise of Type-lam by writing a checkmark above the judgment as we al-
ready derived it in part (a). In such a case, as we are not applying a rule, we do not place a
line on top of the judgment nor do we write any rule name.

1


