
Definition of Programming Languages

CPSC 311 2015W1
University of British Columbia

Practice Midterm Examination
28 October 2015, 18:30–20:30

Joshua Dunfield

Student
Name:

Student
Number:

Signature:

INSTRUCTIONS
• This is a CLOSED BOOK / CLOSED NOTES examination.

• This examination is PRINTED ON BOTH SIDES of the paper.

• Write all answers ON THE EXAMINATION PAPER.

Try to write your answers in the blanks or boxes given. If you can’t, try to write them elsewhere
on the same page, or on one of the worksheet pages, and LABEL THE ANSWER. We can’t
give credit for answers we can’t find.

• Blanks are suggestions. You may not need to fill in every blank.

• This examination is expected to be worth 15% of the course grade.

Notes for the practice exam:

• The real questions will be on the same general topic as the midterm questions. We are try-
ing to maintain similar difficulty levels, erring on the side of making the practice questions
slightly harder than the actual midterm questions.

• The practice midterm has silly footnotes. The actual midterm doesn’t (it still has silly
question titles, though).

• Point totals may not correspond exactly to the actual midterm.



Worksheet α

2



Question 1 [15 points]: A substitutable fox

A fox has wandered into the West Mall Swing Space, and has brought its own definition of
substitution. Fortunately, most of the definition is the same as what you’ve seen before. It
appears that foxes are abstract syntax.

subst((id x), x, e2) = e2

subst((id y), x, e2) = (id y) if x 6= y

subst((fox eL eR), x, e2) =
(

fox subst(eL, x, e2) subst(eR, x, e2)
)

subst((with x e eB), x, e2) =
(
with x subst(e, x, e2) eB

)
subst((with y e eB), x, e2) =

(
with y subst(e, x, e2) subst(eB, x, e2)

)
if x 6= y

Following the above definition, fill in the blank:

subst
((

fox (id z) (with z (id z) (id z))
)
, z, (id m)

)
=

(
fox subst((id z), z, (id m)) subst

((
with z (id z) (id z)

)
, z, (id m)

))
=

(
fox (id m)

(
with z subst((id z), z, (id m)) (id z)

))
=

(
fox (id m)

(
with z (id m) (id z)

))

It’s not absolutely necessary to write the intermediate steps. But you’re more likely to get the
right answer if you do—and you’re more likely to get partial credit for a wrong answer.

You might be wondering how to evaluate a fox. That’s a good question. But you don’t need to
know how to evaluate a fox to fill in the blank above, because substitution doesn’t do evaluation.

3



Question 2 [30 points]: Energy

This question is about a peculiar recursion expression called b-rec. The b stands for bounded
recursion, or perhaps for battery-powered recursion.

In place of the Fun recursion expression (rec u e), we write (b-rec k u e) for an expression that
can nest itself up to k times, where k is a natural number (0, 1, 2, . . . ).

This recursion expression will not cause the interpreter to loop forever; instead, it will “give up” if
its recursion depth exceeds k. For example, in (b-rec 1 u e), the body e can use u recursively—but
those recursive uses of u must not be recursive themselves.

We enforce this in the evaluation rules. If (b-rec k u e) tries to call itself more than k times, then
it will not evaluate to a value. To represent that situation, we add a judgment e drained.

k ≥ 1 k ′ = k− 1 subst(e, u, (b-rec k ′ u e)) ⇓ v
(b-rec k u e) ⇓ v Eval-b-rec

k < 1

(b-rec k u e) drained

The premise k ≥ 1 of Eval-b-rec prevents Eval-b-rec from deriving (b-rec 0 u e) ⇓ v.
You may need to use the following rules:

(num n) ⇓ (num n)
Eval-num

(btrue) ⇓ (btrue)
Eval-btrue

(bfalse) ⇓ (bfalse)
Eval-bfalse

e ⇓ (btrue) eThen ⇓ v
(ite e eThen eElse) ⇓ v Eval-ite-true

e ⇓ (bfalse) eElse ⇓ v
(ite e eThen eElse) ⇓ v Eval-ite-false

Q2a [15 points] Derive the judgment written below the line.

If you need it, use:

subst
((

ite (btrue) (num 3) (id u)
)
, u,

(
b-rec 0 u

(
ite (btrue) (num 3) (id u)

))
=

(
ite (btrue) (num 3)

(
b-rec 0 u

(
ite (btrue) (num 3) (id u)

)︸ ︷︷ ︸
eBody

))

For convenience, you can write “eBody” instead of
(
ite (btrue) (num 3) (id u)

)
.

1 ≥ 1 0 = 1− 1

(btrue) ⇓ (btrue)
Eval-btrue

(num 3) ⇓ (num 3)
Eval-num(

ite (btrue) (num 3)
(
b-rec 0 u eBody

)) ⇓ (num 3)
Eval-ite-true

(
b-rec 1 u

(
ite (btrue) (num 3) (id u)

)) ⇓ (num 3)
Eval-b-rec

4



Question 2 [30 points]: Energy, continued

Here are the rules for b-rec, again:

k ≥ 1 k ′ = k− 1 subst(e, u, (b-rec k ′ u e)) ⇓ v
(b-rec k u e) ⇓ v Eval-b-rec

k < 1

(b-rec k u e) drained

Q2b [15 points] Implement the above two rules by filling in the type-case branch for b-rec in the function
interp:

(define (interp e) ; interp : E −> E
(type-case E e

; ...
[ite (eCond eThen eElse)

(let ([vCond (interp eCond)])

(type-case E vCond

[btrue () (interp eThen)]

[bfalse () (interp eElse)]

[else (error "ite on a non-boolean")]))]

[rec (u eB)

(let ([v (interp (subst eB u (rec u eB)))])

v)]

[b-rec (k u eB)

(if (>= k 1)

(let ([v (interp (subst eB u (b-rec (- k 1) u eB)))])

v)

(error "b-rec drained")

)]

Under exam conditions, it’s okay to follow the rules less closely; for example, by not let-
binding v and just writing

(interp (subst eB u (b-rec (- k 1) u eB)))

5



Question 3 [20 points]: “You could call it ‘Curry in a Hurry’.”1

Most real languages support functions (or procedures, or methods) that take more than one
argument (or maybe zero arguments). Here, we’ll add functions that take at least one argument.

To add multi-argument functions, we can either add them “for real” by updating the abstract
syntax and evaluation rules (and the typing rules, if our language is typed), or add them as
syntactic sugar. In that case, we only need to change the parser.

In this problem, we’ll add multi-argument functions as syntactic sugar.

We need to update the concrete syntax of Fun, as follows:

〈E〉 ::= . . .

| {lam 〈id〉 . . . 〈E〉}
| {app 〈E〉 〈E〉 . . .}

The “. . . ” are read as one or more occurrences of the preceding nonterminal. Thus, all of the
following are syntactically valid expressions that match the above BNF:

{lam x 5}

{lam x x}

{lam x y 5}

{lam x y z 5}

{app f 3}

{app g a}

{app {app 2 3} b 17}

{app f 1 c 0}

However, {lam 5} (and {app f}) are not syntactically valid: they would be functions (and appli-
cations) of zero arguments, which we won’t allow.

Since we’re implementing multi-argument functions as syntactic sugar, the abstract syntax of Fun
doesn’t change. The relevant parts of the define-type are still

(define-type E

[num (n number?)]

[id (name symbol?)]

[lam (name symbol?) (body E?)]

[app (function E?) (argument E?)]

)

Add code to parse to implement the lam part of the following “desugaring”:

{lam x1 x2 · · · xn 〈E〉} is parsed as {lam x1 {lam x2 · · · {lam xn 〈E〉} · · ·}}

{app 〈E0〉 〈E1〉 · · · 〈En〉} is parsed as {app {· · · {app 〈E0〉 〈E1〉} · · ·} 〈En〉}

For example:

{lam x y {app z 5 y}} is parsed as {lam x {lam y {app {app z 5} y}}}

so (parse '{lam x y {app z 5 y}}) should return the abstract syntax expression(
lam x

(
lam y

(
app (app (id z) (num 5)) (id y)

)))

1Words uttered by a customer of India Garden in Pittsburgh, which the restaurant manager met with an icy glare.

6



Question 3 [20 points]: Curry in a Hurry, continued

(define (parse-lam args)

(if (= (length args) 2)

; single-argument lam
(lam (first args) (parse (second args)))

; multi-argument lam

One approach (probably the easiest):

(lam (first args) (parse-lam (rest args)))

Alternate approach: create concrete syntax and pass that to parse.

(let ([body (parse (cons 'lam (rest args)))])

(lam (first args) body))
))

(define (parse-app args)

(if (= (length args) 2)

; app with one argument (note: (first args) is the function being applied)
(app (parse (first args)) (parse (second args)))

; app with 2 or more arguments
(let* ([last-arg (last args)]

[except-last (reverse (rest (reverse args)))])

(app (parse-app except-last) (parse (last args))))

))

(define (parse sexp)

(cond
; ...
[(list? sexp)

(let*
([head (first sexp)]

[args (rest sexp)]

[arg-count (length args)])

(case head

; ...

[(lam) (if (< arg-count 2)

(error "parse: malformed `lam'")
(if (symbol? (first args))

(parse-lam args)

(error "parse: lam must be followed by an identifier"))

)]

[(app) (if (< arg-count 2)

(error "parse: app needs at least two subexpressions")

(parse-app args))]

))]))

7



Worksheet β

8



Question 4 [15 points]: REDACTED

In this question, use the following evaluation rules:

(num n) ⇓ (num n)
Eval-num

(lam x e) ⇓ (lam x e)
Eval-lam

e1 ⇓ (num n1) e2 ⇓ (num n2)

(add e1 e2) ⇓ (num (n1+ n2))
Eval-add

e1 ⇓ (num n1) e2 ⇓ (num n2)

(sub e1 e2) ⇓ (num (n1− n2))
Eval-sub

Recall the expression strategy and the value strategy for evaluating a function application (app e1 e2).
Both strategies evaluate e1 to (lam x eB), but they differ in how they handle e2:

• The expression strategy evaluates eB with x replaced by e2.

• The value strategy evaluates e2 to a value v2, then evaluates eB with x replaced by v2.

Also recall the evaluation rules that define these strategies:

e1 ⇓ (lam x eB) subst(eB, x, e2) ⇓ v
(app e1 e2) ⇓ v Eval-app-expr

e1 ⇓ (lam x eB) e2 ⇓ v2 subst(eB, x, v2) ⇓ v
(app e1 e2) ⇓ v Eval-app-value

The actual questions are redacted, because we couldn’t figure out something that wouldn’t give
away the actual midterm questions.

However, we can say:

• the actual questions have the exact same preamble (the rules and text above), and

• they fit on the remainder of this page.

9



Worksheet γ

10



Question 5 [30 points]: Demonic Nondeterminism2

Some languages provide a feature that, given a list of expressions, evaluates one of them at
random (well, pseudorandomly, if you want to get precise about it).

In this question, we extend the concrete syntax of the Fun language to include choose blocks:

〈E〉 ::= ...

| {choose 〈E〉 〈E〉 . . .}

Here, 〈E〉 . . . means zero or more occurrences, so a choose contains one expression (the first
〈E〉) followed by zero or more expressions.

We also extend the E define-type, and add an evaluation rule:

(define-type E
...

[choose (expressions (listof E?))]

)

n ≥ 1 1 ≤ k ≤ n ek ⇓ vk
(choose e1 · · · en) ⇓ vk Eval-choose

In Eval-choose, just one of the expressions, the kth expression, is evaluated. (Why just one?
In the rule, k is a meta-variable, the same as n, so we can choose any integer k such that k is
between 1 and n.)

However, this question deals with typing for choose expressions, not with evaluation.

The typing rules reused from Fun that you may need for this question are:

Γ ` e : A Under assumptions Γ , expression e has type A

(x : A) ∈ Γ
Γ ` (id x) : A

Type-var
Γ ` (num n) : Num

Type-num

Γ ` (bfalse) : Bool
Type-false

Γ ` (btrue) : Bool
Type-true

x : A, Γ ` eBody : B

Γ ` (lam x A eBody) : A→ B
Type-lam

Γ ` e1 : A→ B Γ ` e2 : A
Γ ` (app e1 e2) : B

Type-app

Γ ` e : Bool Γ ` eThen : A Γ ` eElse : A
Γ ` (ite e eThen eElse) : A

Type-ite

Now we add a rule for choose:

n ≥ 1 Γ ` e1 : A · · · Γ ` en : A

Γ ` (choose e1 · · · en) : A
Type-choose

Similar to Type-ite, Type-choose requires all the expressions to have the same type A because we
don’t know, statically, which expression will be chosen for evaluation.

2Actual technical term. Yes. Really.

11



Question 5 [30 points]: Demonic Nondeterminism, continued

Q5a [15 points] Complete the following derivation.

2 ≥ 1 x : Num, ∅ ` (bfalse) : Bool
Type-false

x : Num, ∅ ` (btrue) : Bool
Type-true

x : Num, ∅ ` (choose (bfalse) (btrue)) : Bool
Type-choose

∅ ` (lam x Num (choose (bfalse) (btrue))) : Num → Bool
Type-lam

Q5b [20 points] Implement the above rule by filling in the type-case branch for choose in the typeof func-
tion:

(define (typeof tc e) ; typeof : Typing-context E −> (or false Type)
(type-case E e

; ...
[ite (e eThen eElse) (and (t/bool? (typeof tc e))

(let ([AThen (typeof tc eThen)]

[AElse (typeof tc eElse)])

(and (type=? AThen AElse)

AThen)))]

; ...
[choose (eChoices)

(if (empty? eChoices)

#false

(let ([A (typeof tc (first eChoices))])

(if (empty? (rest eChoices))

A

(and (type=? A (typeof tc (choose (rest eChoices))))

A))))]

)

]))

12


