
CPSC 311:
Definition of Programming Languages

2015 Winter Term 1

Joshua Dunfield

University of British Columbia

2015–09–16: Lecture 4

www.ugrad.cs.ubc.ca/~cs311

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 1



Logistics
I Start on the assignment!

We can tell how many people have run handin.

I The assignment is due 1 day after the drop deadline.
You won’t know your mark—but you will know whether
you passed (most of) our test cases.

I If you aren’t (almost) done with the assignment by the drop
deadline, you should probably drop the course.

I Run handin early and often!
(Even if you haven’t done a single problem yet!)

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 2



Logistics
I Start on the assignment!

We can tell how many people have run handin.

I The assignment is due 1 day after the drop deadline.
You won’t know your mark—but you will know whether
you passed (most of) our test cases.

I If you aren’t (almost) done with the assignment by the drop
deadline, you should probably drop the course.

I Run handin early and often!
(Even if you haven’t done a single problem yet!)

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 2



Logistics
I Start on the assignment!

We can tell how many people have run handin.

I The assignment is due 1 day after the drop deadline.
You won’t know your mark—but you will know whether
you passed (most of) our test cases.

I If you aren’t (almost) done with the assignment by the drop
deadline, you should probably drop the course.

I Run handin early and often!
(Even if you haven’t done a single problem yet!)

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 2



Logistics
I Start on the assignment!

We can tell how many people have run handin.

I The assignment is due 1 day after the drop deadline.
You won’t know your mark—but you will know whether
you passed (most of) our test cases.

I If you aren’t (almost) done with the assignment by the drop
deadline, you should probably drop the course.

I Run handin early and often!
(Even if you haven’t done a single problem yet!)

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 2



Today:

I Getting into dynamic semantics:
substitution.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 3



Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 4



Three sides of PLs
I 1. Syntax describes which sequences of symbols are

reasonable.
I 2. Dynamic semantics describes how to run programs.
I 3. Static semantics describes what programs are.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 5



Three sides of PLs
I 1. Syntax describes which sequences of symbols are

reasonable.
I 2. Dynamic semantics describes how to run programs.
I 3. Static semantics describes what programs are.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 5



1. Syntax
I Syntax is (usually) the easiest to define, understand,

and process.

I Racket makes it even easier than usual!

(By accident: the inventors of Lisp designed a more
complex syntax, but the simple syntax had already spread.
For once, simplicity won.)

I We won’t spend much time on syntax.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 6



1. Syntax
I Syntax is (usually) the easiest to define, understand,

and process.

I Racket makes it even easier than usual!

(By accident: the inventors of Lisp designed a more
complex syntax, but the simple syntax had already spread.
For once, simplicity won.)

I We won’t spend much time on syntax.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 6



1. Syntax
I Syntax is (usually) the easiest to define, understand,

and process.

I Racket makes it even easier than usual!

(By accident: the inventors of Lisp designed a more
complex syntax, but the simple syntax had already spread.
For once, simplicity won.)

I We won’t spend much time on syntax.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 6



2. Dynamic semantics

Dynamic semantics is about how programs behave:

I Dynamic semantics tells you how to “step” a program.

I Or how to “evaluate” a program.
I These methods work a little differently, but they have the

same purpose: they tell you what your interpreter is
supposed to do.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 7



2. Dynamic semantics

Dynamic semantics is about how programs behave:

I Dynamic semantics tells you how to “step” a program.
I Or how to “evaluate” a program.

I These methods work a little differently, but they have the
same purpose: they tell you what your interpreter is
supposed to do.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 7



2. Dynamic semantics

Dynamic semantics is about how programs behave:

I Dynamic semantics tells you how to “step” a program.
I Or how to “evaluate” a program.
I These methods work a little differently, but they have the

same purpose: they tell you what your interpreter is
supposed to do.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 7



Defining dynamic semantics
I “Interpreter semantics”:

“to explain a language, write an interpreter for it.”
. . . “When we finally have what we think is the correct
representation of a language’s meaning. . . ”

I If the interpreter you write defines the language, you
cannot know whether it’s correct. (It’s trivially correct,
because it defines itself. “When the President does it, that
means it is not illegal.”)

I You can test it on programs, but tests can only show the
presence of bugs, not their absence!

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 8



Defining dynamic semantics
I “Interpreter semantics”:

“to explain a language, write an interpreter for it.”
. . . “When we finally have what we think is the correct
representation of a language’s meaning. . . ”

I If the interpreter you write defines the language, you
cannot know whether it’s correct. (It’s trivially correct,
because it defines itself. “When the President does it, that
means it is not illegal.”)

I You can test it on programs, but tests can only show the
presence of bugs, not their absence!

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 8



Defining dynamic semantics
I “Interpreter semantics”:

“to explain a language, write an interpreter for it.”
. . . “When we finally have what we think is the correct
representation of a language’s meaning. . . ”

I If the interpreter you write defines the language, you
cannot know whether it’s correct. (It’s trivially correct,
because it defines itself. “When the President does it, that
means it is not illegal.”)

I You can test it on programs, but tests can only show the
presence of bugs, not their absence!

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 8



Substitution
I Substitution is needed to define “laws of computation”.

I (Language designers get to make their own laws.)

I Interestingly, the textbook doesn’t really follow
“interpreter semantics” for substitution:
it defines substitution separately (“Definition 8”, etc.).

I It doesn’t define it particularly “rigorously”—just with
words. But Def. 8 is separate from the Racket code for
subst.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 9



Substitution
I Substitution is needed to define “laws of computation”.

I (Language designers get to make their own laws.)

I Interestingly, the textbook doesn’t really follow
“interpreter semantics” for substitution:
it defines substitution separately (“Definition 8”, etc.).

I It doesn’t define it particularly “rigorously”—just with
words. But Def. 8 is separate from the Racket code for
subst.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 9



Substitution
I Substitution is needed to define “laws of computation”.

I (Language designers get to make their own laws.)

I Interestingly, the textbook doesn’t really follow
“interpreter semantics” for substitution:
it defines substitution separately (“Definition 8”, etc.).

I It doesn’t define it particularly “rigorously”—just with
words. But Def. 8 is separate from the Racket code for
subst.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 9



Substitution
I Substitution is needed to define “laws of computation”.

I (Language designers get to make their own laws.)

I Interestingly, the textbook doesn’t really follow
“interpreter semantics” for substitution:
it defines substitution separately (“Definition 8”, etc.).

I It doesn’t define it particularly “rigorously”—just with
words. But Def. 8 is separate from the Racket code for
subst.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 9



The shadow falls
I In fact, it’s not rigorous at all!

Look at Definitions 3 through 6. . .

I How do you know that the scope of x in

{with {x e1} e2}

is e2?

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 10



The shadow falls
I In fact, it’s not rigorous at all!

Look at Definitions 3 through 6. . .

I How do you know that the scope of x in

{with {x e1} e2}

is e2?

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 10



The shadow falls
I How do you know that the scope of x in

{with {x e1} e2}

is e2?

I “It’s obvious, isn’t it?” (professor from grad school)

I Maybe it’s obvious here.
But compare how scope works in Racket’s let. . .
(Racket Guide: 4.6 Local Binding)

I (DrRacket’s mouse-over arrows are great, but have the
same limitations as writing test cases.)

I “because of the examples on page 15”

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 11

http://docs.racket-lang.org/guide/let.html


The shadow falls
I How do you know that the scope of x in

{with {x e1} e2}

is e2?

I “It’s obvious, isn’t it?” (professor from grad school)

I Maybe it’s obvious here.
But compare how scope works in Racket’s let. . .
(Racket Guide: 4.6 Local Binding)

I (DrRacket’s mouse-over arrows are great, but have the
same limitations as writing test cases.)

I “because of the examples on page 15”

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 11

http://docs.racket-lang.org/guide/let.html


The shadow falls
I How do you know that the scope of x in

{with {x e1} e2}

is e2?

I “It’s obvious, isn’t it?” (professor from grad school)

I Maybe it’s obvious here.
But compare how scope works in Racket’s let. . .
(Racket Guide: 4.6 Local Binding)

I (DrRacket’s mouse-over arrows are great, but have the
same limitations as writing test cases.)

I “because of the examples on page 15”

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 11

http://docs.racket-lang.org/guide/let.html


The shadow falls
I How do you know that the scope of x in

{with {x e1} e2}

is e2?

I “It’s obvious, isn’t it?” (professor from grad school)

I Maybe it’s obvious here.
But compare how scope works in Racket’s let. . .
(Racket Guide: 4.6 Local Binding)

I (DrRacket’s mouse-over arrows are great, but have the
same limitations as writing test cases.)

I “because of the examples on page 15”

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 11

http://docs.racket-lang.org/guide/let.html


The shadow falls
I How do you know that the scope of x in

{with {x e1} e2}

is e2?

I “It’s obvious, isn’t it?” (professor from grad school)

I Maybe it’s obvious here.
But compare how scope works in Racket’s let. . .
(Racket Guide: 4.6 Local Binding)

I (DrRacket’s mouse-over arrows are great, but have the
same limitations as writing test cases.)

I “because of the examples on page 15”

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 11

http://docs.racket-lang.org/guide/let.html


The missing definition
I Definition 3a

In {with {x e1} e2},
x is a binding instance and its scope is e2.

I This is better, but imagine a misunderstanding or
disagreement about what all these words mean.

I (“language lawyering”)

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 12



The missing definition
I Definition 3a

In {with {x e1} e2},
x is a binding instance and its scope is e2.

I This is better, but imagine a misunderstanding or
disagreement about what all these words mean.

I (“language lawyering”)

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 12



The missing definition
I Definition 3a

In {with {x e1} e2},
x is a binding instance and its scope is e2.

I This is better, but imagine a misunderstanding or
disagreement about what all these words mean.

I (“language lawyering”)

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 12



Defining substitution: a more precise way
I (Aside: I’m “the precise one”)

I Substitution is a mathematical function

subst(e, x, v)

I “Intuitively”, it should substitute v for x in e.
More precisely, it should replace all free instances of x with
v, throughout e.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 13



Defining substitution: a more precise way
I (Aside: I’m “the precise one”)

I Substitution is a mathematical function

subst(e, x, v)

I “Intuitively”, it should substitute v for x in e.
More precisely, it should replace all free instances of x with
v, throughout e.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 13



Defining substitution: a more precise way
I (Aside: I’m “the precise one”)

I Substitution is a mathematical function

subst(e, x, v)

I “Intuitively”, it should substitute v for x in e.
More precisely, it should replace all free instances of x with
v, throughout e.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 13



Defining substitution: a more precise way
I Substitution is a mathematical function

subst(e, x, v) that replaces free instances of x in e

I Let’s define substitution over the WAE language.
I’ll use the concrete syntax (EBNF) near the top of page 16.

subst(n, x, v) = n where n is a number

subst(x, x, v) = v

subst(y, x, v) = y if x 6= y

subst({+ eL eR}, x, v) = {+ subst(eL, x, v) subst(eR, x, v)}
subst({− eL eR}, x, v) = {− subst(eL, x, v) subst(eR, x, v)}

subst({with {x e} eB}, x, v) = {with {x subst(e, x, v)} eB}
subst({with {y e} eB}, x, v) = {with {y subst(e, x, v)}

subst(eB, x, v)}
if x 6= y

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 14



Defining substitution: a more precise way
I Substitution is a mathematical function

subst(e, x, v) that replaces free instances of x in e

I Let’s define substitution over the WAE language.
I’ll use the concrete syntax (EBNF) near the top of page 16.

subst(n, x, v) = n where n is a number

subst(x, x, v) = v

subst(y, x, v) = y if x 6= y

subst({+ eL eR}, x, v) = {+ subst(eL, x, v) subst(eR, x, v)}
subst({− eL eR}, x, v) = {− subst(eL, x, v) subst(eR, x, v)}

subst({with {x e} eB}, x, v) = {with {x subst(e, x, v)} eB}
subst({with {y e} eB}, x, v) = {with {y subst(e, x, v)}

subst(eB, x, v)}
if x 6= y

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 14



Defining substitution: a more precise way
I Substitution is a mathematical function

subst(e, x, v) that replaces free instances of x in e

I Let’s define substitution over the WAE language.
I’ll use the concrete syntax (EBNF) near the top of page 16.

subst(n, x, v) = n where n is a number

subst(x, x, v) = v

subst(y, x, v) = y if x 6= y

subst({+ eL eR}, x, v) = {+ subst(eL, x, v) subst(eR, x, v)}
subst({− eL eR}, x, v) = {− subst(eL, x, v) subst(eR, x, v)}

subst({with {x e} eB}, x, v) = {with {x subst(e, x, v)} eB}
subst({with {y e} eB}, x, v) = {with {y subst(e, x, v)}

subst(eB, x, v)}
if x 6= y

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 14



Defining substitution: a more precise way
I Substitution is a mathematical function

subst(e, x, v) that replaces free instances of x in e

I Let’s define substitution over the WAE language.
I’ll use the concrete syntax (EBNF) near the top of page 16.

subst(n, x, v) = n where n is a number

subst(x, x, v) = v

subst(y, x, v) = y if x 6= y

subst({+ eL eR}, x, v) = {+ subst(eL, x, v) subst(eR, x, v)}
subst({− eL eR}, x, v) = {− subst(eL, x, v) subst(eR, x, v)}

subst({with {x e} eB}, x, v) = {with {x subst(e, x, v)} eB}

subst({with {y e} eB}, x, v) = {with {y subst(e, x, v)}
subst(eB, x, v)}

if x 6= y

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 14



Defining substitution: a more precise way
I Substitution is a mathematical function

subst(e, x, v) that replaces free instances of x in e

I Let’s define substitution over the WAE language.
I’ll use the concrete syntax (EBNF) near the top of page 16.

subst(n, x, v) = n where n is a number

subst(x, x, v) = v

subst(y, x, v) = y if x 6= y

subst({+ eL eR}, x, v) = {+ subst(eL, x, v) subst(eR, x, v)}
subst({− eL eR}, x, v) = {− subst(eL, x, v) subst(eR, x, v)}

subst({with {x e} eB}, x, v) = {with {x subst(e, x, v)} eB}

subst({with {y e} eB}, x, v) = {with {y subst(e, x, v)}
subst(eB, x, v)}

if x 6= y

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 14



Defining substitution: a more precise way
I Substitution is a mathematical function

subst(e, x, v) that replaces free instances of x in e

I Let’s define substitution over the WAE language.
I’ll use the concrete syntax (EBNF) near the top of page 16.

subst(n, x, v) = n where n is a number

subst(x, x, v) = v

subst(y, x, v) = y if x 6= y

subst({+ eL eR}, x, v) = {+ subst(eL, x, v) subst(eR, x, v)}
subst({− eL eR}, x, v) = {− subst(eL, x, v) subst(eR, x, v)}

subst({with {x e} eB}, x, v) = {with {x subst(e, x, v)} eB}
subst({with {y e} eB}, x, v) = {with {y subst(e, x, v)}

subst(eB, x, v)}
if x 6= y

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 14



Defining substitution: a more precise way
I Substitution is a mathematical function

subst(e, x, v) that replaces free instances of x in e

I Let’s define substitution over the WAE language.
I’ll use the concrete syntax (EBNF) near the top of page 16.

subst(n, x, v) = n where n is a number

subst(x, x, v) = v

subst(y, x, v) = y if x 6= y

subst({+ eL eR}, x, v) = {+ subst(eL, x, v) subst(eR, x, v)}
subst({− eL eR}, x, v) = {− subst(eL, x, v) subst(eR, x, v)}

subst({with {x e} eB}, x, v) = {with {x subst(e, x, v)} eB}
subst({with {y e} eB}, x, v) = {with {y subst(e, x, v)}

subst(eB, x, v)}
if x 6= y

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 14



More precise or more clear?
I Is a bunch of math I wrote yesterday more precise than the

textbook’s Racket code?

I Maybe not, but it’s “shallower”:
it doesn’t depend on how Racket is defined.
To explain what the Racket code does, you need to define
Racket scope, which means. . .

raincrystal on flickr; CC BY-SA

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 15

https://www.flickr.com/photos/catherine_rain/2240344654/
https://creativecommons.org/licenses/by-sa/2.0/


More precise or more clear?
I Is a bunch of math I wrote yesterday more precise than the

textbook’s Racket code?

I Maybe not, but it’s “shallower”:
it doesn’t depend on how Racket is defined.
To explain what the Racket code does, you need to define
Racket scope, which means. . .

raincrystal on flickr; CC BY-SA

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 15

https://www.flickr.com/photos/catherine_rain/2240344654/
https://creativecommons.org/licenses/by-sa/2.0/


More precise or more clear?
I Is a bunch of math I wrote yesterday more precise than the

textbook’s Racket code?

I Maybe not, but it’s “shallower”:
it doesn’t depend on how Racket is defined.
To explain what the Racket code does, you need to define
Racket scope, which means. . .

raincrystal on flickr; CC BY-SA

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 15

https://www.flickr.com/photos/catherine_rain/2240344654/
https://creativecommons.org/licenses/by-sa/2.0/


Specification vs. implementation
I The mathematical definition of subst doesn’t implement

substitution: you can’t run it.

I Instead, it specifies how an implementation should behave.

I This lets us distinguish
“bug in implementation” vs. “bug in specification”.

I This depends on the specification being more readable
than the implementation.

Caveat: When specifications are bad, they are even less useful
than badly written code. You can maybe run bad code. You can’t
do anything with a bad specification.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 16



Specification vs. implementation
I The mathematical definition of subst doesn’t implement

substitution: you can’t run it.

I Instead, it specifies how an implementation should behave.

I This lets us distinguish
“bug in implementation” vs. “bug in specification”.

I This depends on the specification being more readable
than the implementation.

Caveat: When specifications are bad, they are even less useful
than badly written code. You can maybe run bad code. You can’t
do anything with a bad specification.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 16



Specification vs. implementation
I The mathematical definition of subst doesn’t implement

substitution: you can’t run it.

I Instead, it specifies how an implementation should behave.

I This lets us distinguish
“bug in implementation” vs. “bug in specification”.

I This depends on the specification being more readable
than the implementation.

Caveat: When specifications are bad, they are even less useful
than badly written code. You can maybe run bad code. You can’t
do anything with a bad specification.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 16



Specification vs. implementation
I The mathematical definition of subst doesn’t implement

substitution: you can’t run it.

I Instead, it specifies how an implementation should behave.

I This lets us distinguish
“bug in implementation” vs. “bug in specification”.

I This depends on the specification being more readable
than the implementation.

Caveat: When specifications are bad, they are even less useful
than badly written code. You can maybe run bad code. You can’t
do anything with a bad specification.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 16



Specification vs. implementation
I The mathematical definition of subst doesn’t implement

substitution: you can’t run it.

I Instead, it specifies how an implementation should behave.

I This lets us distinguish
“bug in implementation” vs. “bug in specification”.

I This depends on the specification being more readable
than the implementation.

Caveat: When specifications are bad, they are even less useful
than badly written code. You can maybe run bad code. You can’t
do anything with a bad specification.

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 16



When language specifications go bad

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 17



When language specifications are good
I Written in a common* language (not Racket, not PL/I, not

Algol): math/logic.

I Papers on type systems from 2015 look a lot like those from
1995.

I In 311, you’ll learn how to read and implement some of
these (less bad) specifications, but we’ll skip most of the
mathematical foundations—for that stuff, take CPSC 509
from Ron Garcia!

* to programming language researchers

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 18



When language specifications are good
I Written in a common* language (not Racket, not PL/I, not

Algol): math/logic.

I Papers on type systems from 2015 look a lot like those from
1995.

I In 311, you’ll learn how to read and implement some of
these (less bad) specifications, but we’ll skip most of the
mathematical foundations—for that stuff, take CPSC 509
from Ron Garcia!

* to programming language researchers

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 18



Defining substitution: a more precise way
How would we turn our definition of subst into Racket code?

I Fortunately, Racket is a functional language.
Even better, we have type-case!

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 19



Defining substitution: a more precise way
How would we turn our definition of subst into Racket code?

I Fortunately, Racket is a functional language.
Even better, we have type-case!

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 19



For next time. . .

I No assigned reading.
I But. . . join the club:

Run handin today!

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 20



For next time. . .

I No assigned reading.
I But. . . join the club:

Run handin today!

CPSC 311 2015W1 / Joshua Dunfield / lecture 4 20


