
CPSC 311:
Definition of Programming Languages

2015 Winter Term 1

Joshua Dunfield

University of British Columbia

2015–09–09: Lecture 1

www.ugrad.cs.ubc.ca/~cs311

CPSC 311 2015W1 / Joshua Dunfield 1



Today
I Who am I?
I Hello, what is this course about?
I Defining “Definition of Programming Languages”
I Logistics (attendance, marks, etc., etc.)
I Next time. . .

CPSC 311 2015W1 / Joshua Dunfield 2



Who am I?
“Joshua”

I When I taught at McGill, some students called me “Sir”.
That felt strange.

I In Germany, I got mail addressed to
“Herr Dr. Dunfield”. That felt even stranger.

CPSC 311 2015W1 / Joshua Dunfield 3



Who am I?
“Joshua” = Research Associate + Sessional Lecturer

I A postdoc is sort of halfway between
graduate student and professor

I A “Research Associate” is. . . halfway between postdoc and
professor?

I I’ve studied programming languages for a long time

I I’ve studied Racket for a much shorter time. . .

CPSC 311 2015W1 / Joshua Dunfield 4



Who am I?
“Joshua” = Research Associate + Sessional Lecturer

I A postdoc is sort of halfway between
graduate student and professor

I A “Research Associate” is. . . halfway between postdoc and
professor?

I I’ve studied programming languages for a long time
I I’ve studied Racket for a much shorter time. . .

CPSC 311 2015W1 / Joshua Dunfield 4



Hello, what is this course about?
I World domination?

CPSC 311 2015W1 / Joshua Dunfield 5



World domination: this time for sure!
I 196x: Algol was going to dominate

I 1970: PL/I was going to dominate
I 1980: C was going to dominate
I 1990: C++ was totally going to dominate [Oak paper]
I 2000: Java was going to dominate

Is there some kind of pattern here?

(We might be learning, finally. . . )

CPSC 311 2015W1 / Joshua Dunfield 6



World domination: this time for sure!
I 196x: Algol was going to dominate
I 1970: PL/I was going to dominate

I 1980: C was going to dominate
I 1990: C++ was totally going to dominate [Oak paper]
I 2000: Java was going to dominate

Is there some kind of pattern here?

(We might be learning, finally. . . )

CPSC 311 2015W1 / Joshua Dunfield 6



World domination: this time for sure!
I 196x: Algol was going to dominate
I 1970: PL/I was going to dominate
I 1980: C was going to dominate

I 1990: C++ was totally going to dominate [Oak paper]
I 2000: Java was going to dominate

Is there some kind of pattern here?

(We might be learning, finally. . . )

CPSC 311 2015W1 / Joshua Dunfield 6



World domination: this time for sure!
I 196x: Algol was going to dominate
I 1970: PL/I was going to dominate
I 1980: C was going to dominate
I 1990: C++ was totally going to dominate [Oak paper]

I 2000: Java was going to dominate

Is there some kind of pattern here?

(We might be learning, finally. . . )

CPSC 311 2015W1 / Joshua Dunfield 6



World domination: this time for sure!
I 196x: Algol was going to dominate
I 1970: PL/I was going to dominate
I 1980: C was going to dominate
I 1990: C++ was totally going to dominate [Oak paper]
I 2000: Java was going to dominate

Is there some kind of pattern here?

(We might be learning, finally. . . )

CPSC 311 2015W1 / Joshua Dunfield 6



World domination: this time for sure!
I 196x: Algol was going to dominate
I 1970: PL/I was going to dominate
I 1980: C was going to dominate
I 1990: C++ was totally going to dominate [Oak paper]
I 2000: Java was going to dominate

Is there some kind of pattern here?

(We might be learning, finally. . . )

CPSC 311 2015W1 / Joshua Dunfield 6



World domination: this time for sure!
I 196x: Algol was going to dominate
I 1970: PL/I was going to dominate
I 1980: C was going to dominate
I 1990: C++ was totally going to dominate [Oak paper]
I 2000: Java was going to dominate

Is there some kind of pattern here?

(We might be learning, finally. . . )

CPSC 311 2015W1 / Joshua Dunfield 6



311: Unimpressed by fads
I 311 is not about learning a little about a lot

(“trip to the zoo”)
I We will focus on learning concepts and methods that should

improve PLs in the long run
I Good PL ideas get adopted. . . eventually.

(Lisp in the ’60s ⇒ Java in the ’90s)
I Some hopeful signs that it’s getting faster;

Rust has stuff invented only 10-15 years ago.

This cat is unimpressed by fads.

CPSC 311 2015W1 / Joshua Dunfield 7



311: Unimpressed by fads
I 311 is not about learning a little about a lot

(“trip to the zoo”)
I We will focus on learning concepts and methods that should

improve PLs in the long run
I Good PL ideas get adopted. . . eventually.

(Lisp in the ’60s ⇒ Java in the ’90s)
I Some hopeful signs that it’s getting faster;

Rust has stuff invented only 10-15 years ago.

This cat is unimpressed by fads.
CPSC 311 2015W1 / Joshua Dunfield 7



Course goals
You will learn how to

I Understand design choices (scope, evaluation order,
types. . . ) and some arguments for (and against) them

I Understand, modify, and reason about definitions of
programming languages

I Implement interpreters for programming languages

CPSC 311 2015W1 / Joshua Dunfield 8



Magic-free zone
I Programming languages aren’t magic

I But they’re still lots of fun!

I Programming:
“I can tell the computer what to do”

I Programming languages:
“I can tell the computer how to understand
the instructions”

CPSC 311 2015W1 / Joshua Dunfield 9



Magic-free zone
I Programming languages aren’t magic

I But they’re still lots of fun!

I Programming:
“I can tell the computer what to do”

I Programming languages:
“I can tell the computer how to understand
the instructions”

CPSC 311 2015W1 / Joshua Dunfield 9



Magic-free zone
I Programming languages aren’t magic

I But they’re still lots of fun!

I Programming:
“I can tell the computer what to do”

I Programming languages:
“I can tell the computer how to understand
the instructions”

CPSC 311 2015W1 / Joshua Dunfield 9



Magic-free zone
I Programming languages aren’t magic

I But they’re still lots of fun!

I Programming:
“I can tell the computer what to do”

I Programming languages:
“I can tell the computer how to understand
the instructions”

CPSC 311 2015W1 / Joshua Dunfield 9



Definition of “Programming Languages”
What is a programming language?

I A way to instruct computers

I A well-defined way to instruct computers
I A well-defined way to instruct computers, using symbols

Computers compute.
A programming language is a
precise, symbolic description of a set of possible computations.

CPSC 311 2015W1 / Joshua Dunfield 10



Definition of “Programming Languages”
What is a programming language?

I A way to instruct computers
I A well-defined way to instruct computers

I A well-defined way to instruct computers, using symbols

Computers compute.
A programming language is a
precise, symbolic description of a set of possible computations.

CPSC 311 2015W1 / Joshua Dunfield 10



Definition of “Programming Languages”
What is a programming language?

I A way to instruct computers
I A well-defined way to instruct computers
I A well-defined way to instruct computers, using symbols

Computers compute.
A programming language is a
precise, symbolic description of a set of possible computations.

CPSC 311 2015W1 / Joshua Dunfield 10



Definition of “Programming Languages”
What is a programming language?

I A way to instruct computers
I A well-defined way to instruct computers
I A well-defined way to instruct computers, using symbols

Computers compute.
A programming language is a
precise, symbolic description of a set of possible computations.

CPSC 311 2015W1 / Joshua Dunfield 10



Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

Caveats:

I “Symbolic”: occasional attempts at visual PLs
(Smalltalk-80? Logo? Prograph)

I “Precise” is often aspirational. . .

CPSC 311 2015W1 / Joshua Dunfield 11



Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

Caveats:

I “Symbolic”: occasional attempts at visual PLs
(Smalltalk-80? Logo? Prograph)

I “Precise” is often aspirational. . .

CPSC 311 2015W1 / Joshua Dunfield 11



Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

Caveats:

I “Symbolic”: occasional attempts at visual PLs
(Smalltalk-80? Logo? Prograph)

I “Precise” is often aspirational. . .

CPSC 311 2015W1 / Joshua Dunfield 11



Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

I Programmers need precision so they know what programs
are supposed to do.

I Language implementors need precision so they know how
to implement (interpret, compile, translate to another
language) a language.

I Unfortunately, most PLs are defined using English;
a few are defined using math/logic.

I Unclear what can be defined,
and what should be defined:
“The C language does not exist”
(from Communications of the ACM)

CPSC 311 2015W1 / Joshua Dunfield 12

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext


Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

I Programmers need precision so they know what programs
are supposed to do.

I Language implementors need precision so they know how
to implement (interpret, compile, translate to another
language) a language.

I Unfortunately, most PLs are defined using English;
a few are defined using math/logic.

I Unclear what can be defined,
and what should be defined:
“The C language does not exist”
(from Communications of the ACM)

CPSC 311 2015W1 / Joshua Dunfield 12

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext


Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

I Programmers need precision so they know what programs
are supposed to do.

I Language implementors need precision so they know how
to implement (interpret, compile, translate to another
language) a language.

I Unfortunately, most PLs are defined using English;
a few are defined using math/logic.

I Unclear what can be defined,
and what should be defined:
“The C language does not exist”
(from Communications of the ACM)

CPSC 311 2015W1 / Joshua Dunfield 12

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext


Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

I Programmers need precision so they know what programs
are supposed to do.

I Language implementors need precision so they know how
to implement (interpret, compile, translate to another
language) a language.

I Unfortunately, most PLs are defined using English;
a few are defined using math/logic.

I Unclear what can be defined,
and what should be defined:
“The C language does not exist”
(from Communications of the ACM)

CPSC 311 2015W1 / Joshua Dunfield 12

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext


Definition of Programming Languages
A programming language is a
precise, symbolic method of describing computations.

I Programmers need precision so they know what programs
are supposed to do.

I Language implementors need precision so they know how
to implement (interpret, compile, translate to another
language) a language.

I Unfortunately, most PLs are defined using English;
a few are defined using math/logic.

I Unclear what can be defined,
and what should be defined:
“The C language does not exist”
(from Communications of the ACM)

CPSC 311 2015W1 / Joshua Dunfield 12

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext


Definition of Programming Languages
A programming language is a
precise, symbolic description of a set of possible computations.

I A key idea in programming language research:
There are deep connections between (some) PLs and
(some) logics.

I PL = system of computation
logic = system of reasoning

I A proof of “if X, then Y” is like a function of type X → Y.

I We’ll probably only touch on this in 311.

CPSC 311 2015W1 / Joshua Dunfield 13



Definition of Programming Languages
A programming language is a
precise, symbolic description of a set of possible computations.

I A key idea in programming language research:
There are deep connections between (some) PLs and
(some) logics.

I PL = system of computation
logic = system of reasoning

I A proof of “if X, then Y” is like a function of type X → Y.

I We’ll probably only touch on this in 311.

CPSC 311 2015W1 / Joshua Dunfield 13



Definition of Programming Languages
A programming language is a
precise, symbolic description of a set of possible computations.

I A key idea in programming language research:
There are deep connections between (some) PLs and
(some) logics.

I PL = system of computation
logic = system of reasoning

I A proof of “if X, then Y” is like a function of type X → Y.

I We’ll probably only touch on this in 311.

CPSC 311 2015W1 / Joshua Dunfield 13



Definition of Programming Languages
A programming language is a
precise, symbolic description of a set of possible computations.

I A key idea in programming language research:
There are deep connections between (some) PLs and
(some) logics.

I PL = system of computation
logic = system of reasoning

I A proof of “if X, then Y” is like a function of type X → Y.

I We’ll probably only touch on this in 311.

CPSC 311 2015W1 / Joshua Dunfield 13



Three sides of PLs
I 1. Syntax describes which sequences of symbols are

reasonable.
I 2. Dynamic semantics describes how to run programs.
I 3. Static semantics describes what programs are.

CPSC 311 2015W1 / Joshua Dunfield 14



1. Syntax
I Syntax is (usually) the easiest to define, understand,

and process.

I Racket makes it even easier than usual!

(By accident: the inventors of Lisp designed a more
complex syntax, but the simple syntax had already spread.
For once, simplicity won.)

I We won’t spend much time on syntax.

CPSC 311 2015W1 / Joshua Dunfield 15



1. Syntax
I Syntax is (usually) the easiest to define, understand,

and process.

I Racket makes it even easier than usual!

(By accident: the inventors of Lisp designed a more
complex syntax, but the simple syntax had already spread.
For once, simplicity won.)

I We won’t spend much time on syntax.

CPSC 311 2015W1 / Joshua Dunfield 15



1. Syntax
I Syntax is (usually) the easiest to define, understand,

and process.

I Racket makes it even easier than usual!

(By accident: the inventors of Lisp designed a more
complex syntax, but the simple syntax had already spread.
For once, simplicity won.)

I We won’t spend much time on syntax.

CPSC 311 2015W1 / Joshua Dunfield 15



2. Dynamic semantics

Dynamic semantics is about how programs behave:

I Dynamic semantics tells you how to “step” a program.

I You can’t ride a bus effectively unless you know that buses
tend to move forward.

CPSC 311 2015W1 / Joshua Dunfield 16



3. Static semantics

Static semantics is about what programs are.

I Static semantics tells you how to understand a program
without stepping it.

I You don’t want to experimentally ride every bus until you
get where you want to be.
(“See where it takes you”?!)

CPSC 311 2015W1 / Joshua Dunfield 17



Defining dynamic semantics
I Rules define how to step a program:

V1 ∈ Z V2 ∈ Z n = V1+ V2

(+ V1 V2) 7→ n

E1 7→ E2

(V E1 . . . ) 7→ (V E2 . . . )

I Reminiscent of the “laws of computation” from
How to Design Programs: BSL Intermezzo

CPSC 311 2015W1 / Joshua Dunfield 18

http://www.ccs.neu.edu/home/matthias/HtDP2e/i1-2.html#(part._sec~3asynsem~3asem)


Defining static semantics
I A [static] type system keeps out sort-of-nonsense:

(+ "no" 1)

I Like stepping, type systems can be defined by rules.

E1 : number . . . En : number
(+ E1 . . . En) : number

CPSC 311 2015W1 / Joshua Dunfield 19



Defining static semantics
I A [static] type system keeps out sort-of-nonsense:

(+ "no" 1)

I Like stepping, type systems can be defined by rules.

E1 : number . . . En : number
(+ E1 . . . En) : number

CPSC 311 2015W1 / Joshua Dunfield 19



Prerequisites
I Official prerequisite: CPSC 210

I At least as helpful: CPSC 110
I . . . because in 110, you programmed in Racket.

I If you don’t know Racket (Scheme), you’ll need to spend
extra time on 311, especially in the first few weeks!

I If you’ve forgotten Racket, you’ll need to spend some extra
time.

CPSC 311 2015W1 / Joshua Dunfield 20



Prerequisites
I Official prerequisite: CPSC 210

I At least as helpful: CPSC 110
I . . . because in 110, you programmed in Racket.

I If you don’t know Racket (Scheme), you’ll need to spend
extra time on 311, especially in the first few weeks!

I If you’ve forgotten Racket, you’ll need to spend some extra
time.

CPSC 311 2015W1 / Joshua Dunfield 20



Prerequisites
I Official prerequisite: CPSC 210

I At least as helpful: CPSC 110
I . . . because in 110, you programmed in Racket.

I If you don’t know Racket (Scheme), you’ll need to spend
extra time on 311, especially in the first few weeks!

I If you’ve forgotten Racket, you’ll need to spend some extra
time.

CPSC 311 2015W1 / Joshua Dunfield 20



Texts
I For the first couple of weeks, and again near the end, we’ll

roughly follow some chapters from Shriram
Krishnamurthi’s Programming Languages: Application and
Interpretation.

I For the middle part of the course, we’ll use my lecture
notes, supplemented with other materials.

I Everything we use will be available for free on the web.

CPSC 311 2015W1 / Joshua Dunfield 21



Lectures
I Mix and match:

slides, DrRacket on my laptop, whiteboard,
camera projector, . . .

I We will often develop code, rules, or ideas on the fly.

I I do not grade attendance or participation.

I But you’ll do better if you attend and participate, especially
since we’re not strictly following a textbook.

I My lecture notes will be intended to be complete,
but intent is not magic.

CPSC 311 2015W1 / Joshua Dunfield 22



TAs
I Tutorials in X-Wing 015 by your awesome TAs:

I Mon. 12:00–13:00 Felipe Bañados Schwerter
I Mon. 15:00–16:00 Louie Dinh
I Mon. 16:00–17:00 Yan Peng

I TA office hours (probably also in X-Wing)
to be determined

CPSC 311 2015W1 / Joshua Dunfield 23



Piazza
I Discussions on our Piazza site (link on course webpage)

I I haven’t used Piazza before, so bear with me.

CPSC 311 2015W1 / Joshua Dunfield 24



Marking
I Assignments, including project: 45%

I Assignments (some in groups)
I Group project

I Midterm exam: 15%
I Final exam: 40%
I Midterm/final are “all’s well that ends well”:

I If your final exam score is higher than your midterm score,
the final is “inflated” to 55%.

I The instructor reserves the right to modify these weights
(but does not anticipate exercising that right).

CPSC 311 2015W1 / Joshua Dunfield 25



Marking
I Assignments, including project: 45%

I Assignments (some in groups)
I Group project

I Midterm exam: 15%
I Final exam: 40%
I Midterm/final are “all’s well that ends well”:

I If your final exam score is higher than your midterm score,
the final is “inflated” to 55%.

I The instructor reserves the right to modify these weights
(but does not anticipate exercising that right).

CPSC 311 2015W1 / Joshua Dunfield 25



Assignments
I Partly programming (mostly in Racket):

I implementing dynamic semantics by writing interpreters
(stepping programs according to rules)

I implementing static semantics by writing type checkers,
according to rules

I Partly theory
(is theory anything that isn’t programming?)

CPSC 311 2015W1 / Joshua Dunfield 26



Survey
I Mostly for us to decide how much time to spend

on Racket review

CPSC 311 2015W1 / Joshua Dunfield 27



Next time. . .

www.ugrad.cs.ubc.ca/~cs311
I Start refreshing your Racket:

110 material, HtDP, etc. (see website)
I Skim PLAI Chapters 1 & 2

I Skim “Intermezzo: BSL” from HtDP
(caveats)

CPSC 311 2015W1 / Joshua Dunfield 28


