Q1	Q2	Q3	Q4	Q5	TOTAL
55	50	50	25	-	200

Definition of Programming Languages CPSC 311 2015W1

University of British Columbia

Practice Final Examination-Episode One, plus Q3 Joshua Dunfield
\square Student Number: \square

Signature: \square

INSTRUCTIONS

- This is a CLOSED BOOK / CLOSED NOTES examination.
- Write all answers ON THE EXAMINATION PAPER.

Try to write your answers in the blanks or boxes given. If you can't, try to write them elsewhere on the same page, or on one of the worksheet pages, and LABEL THE ANSWER. We can't give credit for answers we can't find.

- Blanks are suggestions. You may not need to fill in every blank.

Question 1 [55 points]: "If it's 'dynamic', it must be better."

The following rules define an environment-based semantics for lexically-scoped functions, lam, and dynamically-scoped functions, ds-lam.
$\mathrm{en} v \vdash \mathrm{e} \Downarrow v$ Under environment $e n v$, expression e evaluates to value v

$$
\begin{aligned}
& \frac{\mathrm{en} v \vdash(\text { num } n) \Downarrow(\text { num } n)}{} \text { Env-num } \quad \frac{\mathrm{en} v \vdash \mathrm{e} 1 \Downarrow(\text { num } n 1) \quad \mathrm{en} v \vdash \mathrm{e} 2 \Downarrow(\text { num n2) }}{\mathrm{en} v \vdash(\text { add } \mathrm{e} 1 \mathrm{e} 2) \Downarrow(\text { num } \mathrm{n} 1+\mathrm{n} 2)} \text { Env-add } \\
& \frac{e n v \vdash e 1 \Downarrow v 1 \quad x=v 1, e n v \vdash e 2 \Downarrow v 2}{e n v \vdash(\text { with } \times e 1 \text { e2) } \Downarrow v 2} \text { Env-with } \\
& \frac{\operatorname{lookup}(e n v, x)=e}{e n v \vdash(\mathrm{id} x) \Downarrow e} \text { Env-id } \quad \frac{\operatorname{lookup}(\mathrm{en} v, x) \text { undefined }}{\mathrm{env} \vdash(\mathrm{id} x) \text { unknown-id-error }} \text { Env-unknown-id }
\end{aligned}
$$

$$
\frac{e n v \vdash e 1 \Downarrow\left(\text { clo en } v_{\text {old }}(\operatorname{lam} x e B)\right) \quad e n v \vdash e 2 \Downarrow v 2 \quad x=v 2, e n v_{\text {old }} \vdash e \mathrm{eB} \Downarrow v}{e n v \vdash(\mathrm{app} \mathrm{e} 1 \mathrm{e} 2) \Downarrow v} \text { Env-app }
$$

$\frac{e n v \vdash(\text { ds-lam } x e 1) \Downarrow(\text { ds-lam } x e 1)}{e n v-d s-l a m} \frac{e n v \vdash e 1 \Downarrow(d s-l a m \times e B) \quad e n v \vdash e 2 \Downarrow v 2 \quad x=v 2, e n v \vdash e B \Downarrow v}{e n v \vdash(\text { app } e 1 e 2) \Downarrow v}$ Env-ds-app

Assume that $\operatorname{lookup}(e n v, x)$ returns the leftmost binding of x. For example:

$$
\text { lookup }((x=(\text { num } 2), x=(\text { num } 1), \emptyset), x)=(\text { num } 2)
$$

Consider the following expression, shown in concrete syntax (left) and in abstract syntax (right).

```
{with {y 100}
    {with {f {with {y 10}
                {lam x {+ x y}}}}
            {with {y 2}
                {app f y}}}}
```

| Q1a [10 points]Complete the
 abstract syntax tree for
 the above expression. | $\Longrightarrow \quad$with
 /\quady
 num
 100 |
| :--- | :--- | :--- |

Question 1 [55 points]: "If it’s ‘dynamic', it must be better." (cont.)

Q1b [10 points] If we evaluate the above expression in the empty environment, what value do we get?

Q1c [10 points] While evaluating the above expression, we will evaluate the body of the lam. When we evaluate that expression, (add (id x) (id y)), what is the complete environment?

Q1d [15 points] Warning: Dynamic scope ahead!
If we evaluate the expression that is almost the same, but has ds-lam in place of lam, as shown below, what value do we get?

$$
\begin{aligned}
& \begin{array}{l}
\text { \{with \{y 100\} } \\
\text { \{with \{f \{with }\left\{\begin{array}{l}
\text { y } 10\}
\end{array}\right. \text { (with y (num 100) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \{with \{y 2\} } \\
& \text { (ds-lam x (add (id } x)(\text { id } y)))) \\
& \text { \{app fy\}\}\}\} (with y (num 2) } \\
& (\operatorname{app}(\operatorname{id} f)(\operatorname{id} y)))))
\end{aligned}
$$

Q1e [10 points] (No more dynamic scope. Yay!)
This will be a question about substitution.
It should be roughly similar to Q1 on the midterm (and the practice midterm).

Worksheet (i)

Worksheet (ii)

Question 2 [50 points]: Little Perennials II

The expression strategy, value strategy, and lazy evaluation are different ways of evaluating a function application (app e1 e2). All strategies evaluate e1 to (lam $x e B$), but they differ in how they handle e2:

- The expression strategy evaluates e B with x bound to a thunk containing e2. (The thunk (thk enve2) saves the current environment env, to make sure we don't use dynamic scoping.)
- The value strategy evaluates e2 to a value $v 2$, then evaluates $e B$ with x bound to that value.
- Lazy evaluation creates a lazy thunk, $\ell \triangleright($ lazy-thk enve2), in the store, and evaluates eB with x bound to (lazy-ptr ℓ). If (id x) is evaluated, we evaluate $e 2$ to a value $v 2$, and replace $\ell \triangleright$ (lazy-thk enve2) with $\ell \triangleright v 2$ (rule SEnv-lazy-ptr). If (id x) is evaluated again, rule SEnv-lazy-ptr-done looks up the value $v 2$, without evaluating e2 again.

If you need to, you can refer to the following evaluation rules:
$e n v ; S \vdash e \Downarrow v ; S^{\prime}$ Under environment $e n v$ and store S, expression e evaluates to v with updated store S^{\prime}

$$
\begin{aligned}
& \frac{e n v ; S \vdash e 1 \Downarrow\left(\text { clo } e n v_{\text {old }}(\operatorname{lam} x e B)\right) ; S 1 \quad e n v ; S 1 \vdash e 2 \Downarrow v 2 ; S 2 \quad x=v 2, e n v_{\text {old }} ; S 2 \vdash e B \Downarrow v ; S^{\prime}}{e n v ; S \vdash(\text { app } e 1 \text { e2 }) \Downarrow v ; S^{\prime}} \text { SEnv-app-value } \\
& \frac{e n v ; S \vdash e 1 \Downarrow\left(\text { clo env } v_{\text {old }}(\text { lam } \times e B)\right) ; S 1 \quad \text { } 1=(\text { thk enve2 }), e n v_{\text {old }} ; S 1 \vdash e B \Downarrow v ; S 2}{e n v ; S \vdash(\text { app e1 e2) } \Downarrow v ; S 2} \text { SEnv-app-expr }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\operatorname{lookup-loc}(S, \ell)=\left(\text { lazy-thk env } v_{\text {arg }} e 2\right) \quad \text { env } v_{\text {arg }} ; S \vdash e 2 \Downarrow v ; S 1 \quad \text { update-loc }(S 1, \ell, v)=S 2}{e n v ; S \vdash(\operatorname{lazy}-\operatorname{ptr} \ell) \Downarrow v ; S 2} \text { SEnv-lazy-ptr } \\
& \frac{\operatorname{lookup-loc}(S, \ell)=v 2 \quad v 2 \neq(\text { lazy-thk } \cdots \cdots)}{e n v ; S \vdash(\text { lazy-ptr } \ell) \Downarrow v 2 ; S} \text { SEnv-lazy-ptr-done } \\
& \frac{e n v_{\text {old }} ; S \vdash e \Downarrow v ; S^{\prime}}{e n v ; S \vdash\left(\text { thk } e n v_{\text {old }} e\right) \Downarrow v ; S^{\prime}} \text { SEnv-thk } \quad \frac{\operatorname{lookup}(e n v, x)=e \quad e n v ; S \vdash e \Downarrow v ; S^{\prime}}{e n v ; S \vdash(\text { id } x) \Downarrow v ; S^{\prime}} \text { SEnv-id } \\
& \frac{e n v ; S \vdash e 1 \Downarrow(\text { num } n 1) ; S 1 \quad e n v ; S 1 \vdash e 2 \Downarrow(\text { num } n 2) ; S^{\prime}}{e n v ; S \vdash(\text { add } e 1 e 2) \Downarrow(\text { num } n 1+n 2) ; S^{\prime}} \text { SEnv-add } \\
& \frac{e n v ; S \vdash e 1 \Downarrow(\text { num } n 1) ; S 1 \quad e n v ; S 1 \vdash e 2 \Downarrow(\text { num } n 2) ; S^{\prime}}{e n v ; S \vdash(\text { sub } e 1 e 2) \Downarrow(\text { num } n 1-n 2) ; S^{\prime}} \text { SEnv-sub }
\end{aligned}
$$

Question 2 [50 points]: Little Perennials II, continued

Consider the following expression:

$$
\begin{array}{cc}
\left\{\operatorname { a p p } \left\{\begin{array}{c}
\{\operatorname{lam} \mathrm{x}\{\operatorname{lam} \mathrm{y}\{+\mathrm{y} \mathrm{y}\}\}\} \\
\begin{array}{l}
\text { \{-7 } 1\}\}
\end{array}
\end{array}\right.\right. & (\operatorname{app}(\operatorname{app}(\operatorname{lam} x(\operatorname{lam} y(\operatorname{add}(\text { id } y)(\text { id } y)))) \\
\{-101\}\} & (\text { sub }(\text { num } 7)(\text { num } 1))) \\
& (\text { sub }(\text { num } 10)(\text { num } 1)))
\end{array}
$$

Q2a [15 points] If we implement the SEnv-app-value rule (and not the SEnv-app-expr and SEnv-app-lazy rules) and evaluate the above expression, we will perform
...- addition(s), and subtraction(s).

Q2b [10 points] Now we switch from the value strategy to the expression strategy. Complete the derivation tree for the second premise of SEnv-app-expr.

Q2c [10 points] If we implement the SEnv-app-expr rule instead of SEnv-app-value, and evaluate the above expression, we will perform
-.-- addition(s), and ...- subtraction(s).

Q2d [15 points] If we implement the SEnv-app-lazy rule instead of SEnv-app-value, and evaluate the above expression, we will perform
.- addition(s), and _... subtraction(s).

Question 3 [50 points]: Big Log

The small-step semantic interpreters we have seen so far do not include side effects. Interesting side effects include state and input/output.

An interpreter can be extended with input/output by introducing a print construct, and we can model the effect of printing by appending to an output buffer B:
$\mathrm{B} ; e \longrightarrow \mathrm{~B}^{\prime} ; e^{\prime}$ With starting buffer B , expression e steps to expression e^{\prime} and an updated buffer B^{\prime}

Reduction rules:

$\overline{\mathrm{B} ;(\operatorname{add}(\text { num } \mathrm{n} 1)(\text { num } n 2)) \longrightarrow B ;(\text { num } n 1+n 2)}$ Step-add

$$
\overline{\mathrm{B} ;(\text { with } \times v 1 \mathrm{e} 2) \longrightarrow \mathrm{B} ; \operatorname{subst}(e 2, x, v 1)} \text { Step-with }
$$

$$
\frac{\mathrm{B} 2=\operatorname{append}(\mathrm{B} 1, v)}{\mathrm{B} 1 ;(\text { print } v) \longrightarrow \mathrm{B} 2 ; v} \text { Step-print }
$$

Context rule:

$\frac{\mathrm{B} ; \mathrm{e} \longrightarrow \mathrm{B}^{\prime} ; \mathrm{e}^{\prime}}{\mathrm{B} ; \mathcal{C}[\mathrm{e}] \longrightarrow \mathrm{B}^{\prime} ; \mathcal{C}\left[\mathrm{e}^{\prime}\right]}$ Step-context
Rule Step-context uses the following evaluation contexts:

$$
\begin{aligned}
\mathcal{C}:= & {[] } \\
& \mid(\operatorname{add} \mathcal{C} e) \\
& \mid(\operatorname{add} v \mathcal{C}) \\
& \mid(\text { with } x \mathcal{C} e) \\
& \mid(\operatorname{print} \mathcal{C})
\end{aligned}
$$

This question uses the following define-type definitions, and functions with the following signatures:
(define-type Res ; Type of result of 'reduce' and 'step':
[RES (B Buffer?) (e E?)]) ; a buffer and an expression
(define-type Buffer
[buffer/empty]
[buffer/append (head Buffer?) (tail E?)])
; append-buffer : Buffer $E \rightarrow$ Buffer
;
; (append-buffer B1 v) $=\operatorname{append}(\mathrm{B} 1, v)$
; value? : $E \rightarrow$ boolean
;
; Returns \#true iff e is a num.

Go to the next page.

Question 3 [50 points]: Big Log, continued

Q3a [15 points] In the function reduce (below), implement the rule Step-print.

```
; reduce : Buffer \(E \rightarrow\) (or Res false)
; Given a buffer \(B\) and expression e, return (RES B2 e2) where B; e \(\longrightarrow \mathrm{B} 2 ; \mathrm{e} 2\)
; using a reduction rule, or \#false if no reduction rule can be applied.
(define (reduce B e)
    (type-case E e
        [add (e1 e2)
                (if (and (value? e1) (num? e1)
                    (value? e2) (num? e2))
                    (RES B
                            (num (+ (num-n e1) (num-n e2))))
            \#false)]
; ...
[print (e1)
```


]))

Q3b [10 points] In the function step (below), implement the evaluation context (print \mathcal{C}).

```
; step : Buffer E (or Res false)
; Given a buffer B and expression e, return (RES B2 e2) where B;e \longrightarrow B2; e2
; using rule Step-context, or #false if no derivation of B;e \longrightarrowB2; e2 exists.
(define (step B e)
    (or (reduce B e)
        (type-case E e
        [add (e1 e2)
            (if (step B e1)
                    (type-case Res (step B e1) ; C ::= (add C e2)
                        [RES (B2 s1)
                    (RES B2 (add s1 e2))])
                    (if (and (value? e1) (step B e2))
                        (type-case Res (step B e2) ; C ::= (addvC)
                        [RES (B2 s2)
                        (if s2
                            (RES B2 (add e1 s2))
                            #false)])
                    #false)
            )])]
    ; ...
    [print (e1)
```

])))

Question 3 [50 points]: Big Log, continued

Q3c [25 points] We can introduce concurrency into our language by adding angelic nondeterminism:

	Step-par-left	$\mathcal{C}::=$
$\mathrm{B} ;(\operatorname{par} \nu 1 \mathrm{e} 2) \longrightarrow \mathrm{B} ; \nu 1$	-par	$\mid(\operatorname{par} \mathcal{C} e)$
	Step-par-right	\| (pare \mathcal{C})

Let \longrightarrow * be the transitive/reflexive closure of \longrightarrow.
That is, $e \longrightarrow^{*} e^{\prime}$ if either $e^{\prime}=e$, or $e \longrightarrow e 2$ and $e 2 \longrightarrow \longrightarrow^{*} e^{\prime}$.
Suppose our program is this expression e:

$$
e=(\operatorname{print}(\operatorname{par}(\text { with } r 2(\operatorname{print}(\text { num 2) })(\text { num 22) })(\text { with r3 }(\operatorname{print}(\text { num } 3))(\text { num 33) })))
$$

The final result of e is not always the same; both the buffer and the resulting value can vary.
For example:

$$
\left\rangle ; e \longrightarrow^{*}\langle(\text { num } 2),(\text { num } 22)\rangle ;(\text { num } 22)\right.
$$

by the intermediate steps

$$
\begin{aligned}
\rangle ; e & \longrightarrow\langle(\text { num } 2)\rangle ;(\operatorname{print}(\operatorname{par}(\text { with r2 }(\text { num } 2)(\text { num 22 }))(\text { with } r 3(\text { print }(\text { num 3) })(\text { num 33) }))) \\
& \longrightarrow\langle(\text { num 2) }\rangle ;(\operatorname{print}(\operatorname{par}(\text { num 22 })(\text { with r3 }(\text { print }(\text { num 3) })(\text { num 33) }))) \\
& \longrightarrow\langle(\text { num 2) }\rangle ;(\operatorname{print}(\text { num 22) }) \\
& \longrightarrow\langle(\text { num 2) })(\text { num 22 })\rangle ;(\text { num 22 })
\end{aligned}
$$

Fill in the intermediate computation steps:

Note: Different solutions are possible!

Question 4 [25 points]: The Criminal Cats of West 11th Avenue

The subsumption principle states that, if $A 1<$: A2 (meaning that A1 is a subtype of A2), then any value of type $A 1$ can safely be used wherever a value of type $A 2$ is required.

Each part of this question proposes one or more subtyping rules. In each part, determine whether the rules proposed maintain the subsumption principle or violate it. If they violate the subsumption principle, give an example of an expression of type A1 that cannot be safely used where an expression of type $A 2$ is expected.

Assume, in all the parts, that we have the following subtyping and typing rules that allow us to distinguish positive (≥ 0) rational numbers from negative (≤ 0) rational numbers through types Pos and Neg, which are both subtypes of Rat.

Also assume there is a function print-pos: Pos \rightarrow Pos that can only print positive rationals, and will crash if given a rational that is less than zero.

$$
\overline{\text { Pos <: Rat }} \quad \overline{N e g ~<: ~ R a t ~} \quad \frac{n \geq 0}{\Gamma \vdash(\text { num } n): \operatorname{Pos}} \quad \frac{n \leq 0}{\Gamma \vdash(\text { num } n): \operatorname{Neg}} \quad \frac{\Gamma \vdash e: A}{\Gamma \vdash(\operatorname{ref} e): \operatorname{Ref} A}
$$

Example Proposed rule:

$$
\overline{\text { Rat < : Pos }}
$$

Does this proposed rule: \square maintain the subsumption principle, or violate it (example expression: _ (num -3)

Q4a [10 points]

In this problem, the abstract syntax of an expression that creates a ref is (refe).

$$
\text { Proposed rule: } \quad \frac{A<: A^{\prime} \quad A^{\prime}<: A}{(\operatorname{Ref} A)<:\left(\operatorname{Ref} A^{\prime}\right)}
$$

Does this proposed rule: \square maintain the subsumption principle, or \square violate it (example expression: \qquad where $A=\ldots, \ldots-\ldots$ and $A^{\prime}=$ \qquad

Q4b The feline criminals of West 11th Avenue (perhaps confused about the meaning of "Rat") [15 points] have proposed that any function taking a Rat as its argument can be used as a Rat.

Recall some relevant typing rules:
$\frac{\Gamma \vdash e 1: \operatorname{Rat} \quad \Gamma \vdash e 2: R a t}{\Gamma \vdash(\operatorname{add} e 1 e 2): \text { Rat }}$
$\frac{x: A, \Gamma \vdash e \text { Body }: B}{\Gamma \vdash(\operatorname{lam} x e \operatorname{Bod} y):(A \rightarrow B)}$
$\frac{\Gamma \vdash e 1:(A \rightarrow B) \quad \Gamma \vdash e 2: B}{\Gamma \vdash(\text { app } e 1 e 2): B}$

Proposed subtyping rule:

$$
\overline{(\text { Rat } \rightarrow B)<: \operatorname{Rat}}
$$

Does this proposed rule: \square maintain the subsumption principle, or violate it (example expression: \qquad where $B=$ \qquad

Worksheet (iii)

