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1 Type inference

When we started doing typing, we encountered the rule

x : A, Γ ` e : B
Γ ` (lam x e) : A→ B

?Type-lam

which we couldn’t implement, because to make the recursive call to typeof, we needed to extend
the typing context Γ (tc) with x : A, but we didn’t know what A was.

As a simple workaround, we added the type A to the abstract syntax of lam:

x : A, Γ ` e : B
Γ ` (lam x A e) : A→ B

?Type-lam

Now we’ll show how to do (a simple form of) type inference, which infers the type A without
making the programmer write it.

The general idea is to use A as a placeholder, and update it once we know what A needs to be.
On paper, this is not too difficult: we write A and B instead of actual types, and leave empty
boxes off to the side of the derivation. (See the scanned page.) Initially, these boxes are blank
because we don’t yet know what A and B are, but from Type-add, we can figure out that since
(id x) has type A, and Type-add needs A needs to be Num, then we should use Num. At this point,
we write Num in the box labelled A.

From the conclusion of Type-add, we also see that B is Num.

Even though we wrote A → B in the conclusion, we know that A = Num and B = Num, so we
have really derived

∅ ` (lam x (add (id x) (id x))) : Num → Num

In fact, everywhere we wrote A in the derivation, we should now interpret A as Num. By writing
Num in the box for A, we have updated or “mutated” A. This suggests a way to implement this
technique: represent A as a Racket box that is either “blank” or “filled in” with a type. To “fill in”
the box, we can use Racket’s set-box!.

Extending the define-type for Type (see type-inference.rkt), we have
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§1 Type inference

(define-type Type
[t/num] ; Num

[t/bool] ; Bool
[t/-> (domain Type?) (range Type?)] ; {-> domain range}
[t/var (var box?)]

)

We will represent a blank box on paper by a box containing #false, and a filled-in box by a box
containing a Type.

(I tried to use a Racket “box contract” box/c to specify this, but ran into trouble with “imperson-
ators” and “chaperones”. Yes, really.)

1.1 Equating types

The type=? function provides a starting point for a central mechanism of type inference, unifica-
tion. Our extended version of type=? is called type=?!.

But unlike type=?, which is only asking “are these types equal?”, the new function type=?! is
asking “can these types be made equal?”

If a mathematician accosts you and asks, “Is x plus 1 equal to 5?” the correct answer is “I don’t
know”. But if she asks you to solve the equation

x+ 1 = 5

you should answer “x = 4”. More generally, given an equation, you can try to solve all the
variables in it.

If the equation has no variables, then you are just doing arithmetic. So, for types without any
t/vars, this new function type=?! will work just like type=?: if the types are literally the same,
it will return #true, otherwise #false.

The difference is in how type=?! works on variables t/var:

• If the first type is a variable whose box (call it α) contains #false (meaning “blank” or
“unknown”), then we are trying to solve the equation

α = B

where we don’t have a solution for α. But the solution is right there: let α = B. So in this
case, we use set-box! to replace the #false inside the box α with B.

Boxes are mutable and global, so this operation effectively “rewrites” any other occurrences
of t/var α in the derivation.
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• If the second type is a variable whose box (call it β) contains #false, then we have a
situation symmetric to the one above: we are trying to solve

A = β

So we use set-box! to put A inside β.

• If the first type is a variable that has been solved, its box α contains a type A0. That is, we
know that α = A0, and we want to try to make α = B, so we try to make A0 = B.

• Similarly, if the second type is variable that has been solved, its box β contains a type B0.
We know that β = B0, and we want to make A = β, so we try to make A = B0.

Since type=?! will be our mechanism for solving type variables, we need to update typeof
(which is now called infer) to use type=?! more often. For example, the old infer sometimes
used type-case with a t/num branch to check whether a type A1 was a Num. Now the type might
be a t/var, so instead, infer calls (type=?! (t/num) A1).

1.1.1 The “occurs check”

As given, this technique works most of the time, but it will not work for this Fun expression:

(lam x (app (id x) (id x)))

In the lam branch, we create a t/var for x, and recursively call infer to infer the type of the
body (app (id x) (id x)).

In the app branch of infer, we create a type (t/-> A1 B) where A1 and B are t/vars. Here, A1
will be made equal to A (the type of x). But we need the type of (id x) to be equal to A1 → B,
that is, equal to (t/-> A1 B). The type of (id x) is A, so (since A = A1) we are trying to make
this equation hold:

A→ B = A

where A is unsolved. So (the original version of) type=?! sets the contents of A’s box to A→ B.
This creates a cyclic “type” that makes something (I’m not sure what, and lack the patience to
figure it out) loop forever.

But it should never be possible for A→ B to equal A. For any such types without t/vars, type=?
would have returned #false.

The solution is something called an “occurs check”, which checks whether the t/vars occurs in
the other type. For our example, that amounts to checking whether A occurs in A → B. It does
occur, so we return #false.

Adding the occurs check led to another problem, which is that A occurs in A. So I added another
check, done before the occurs check, to see whether both A and B are the same type variable; if
they are, type=?! returns #true. (A mathematician accosts you and asks if x equals x. You should
say “yes”. You should especially say “yes” if the mathematician is also an Objectivist, because “A
is A”.)
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