
CPSC 311: Definition of Programming Languages:
Subtyping

22-subtyping

Joshua Dunfield
University of British Columbia

November 19, 2015

1 Review: Typing

2 Subtyping

In Typed Fun, every expression either has no type (the typing judgment Γ ` e : . . . cannot be
derived; equivalently, typeof returns #false) or has a unique type, which is the A such that
Γ ` e : A, or equivalently, the type A returned by typeof. Thus, types are non-overlapping: if
A 6= B, then the set of expressions that have type A are disjoint from the expressions that have
type B.

In everyday life (and everyday mathematics), we classify things rather more elaborately than
Typed Fun: an entity or person may belong to several, overlapping categories. Overlapping
categories are beyond our concern today; instead, we’ll consider categories that are entirely
contained within each other.

2.1 Our first subtyping system

Mathematicians would generally agree that the number represented by writing 2 is

• a positive integer (an n such that n ≥ 0);

• an integer;

• a rational number (it can be written as a ratio 2
1);

• a real number; and

• a complex number (whose imaginary part is 0).

Mathematically, the positive integers are a subset of the integers, which are a subset of the ratio-
nals, and so on.

Adding a category such as “even integer” would spoil this arrangement: some numbers are even
but not positive, and some numbers are positive but not even. Subtyping can capture such
relationships, but we’ll save those for another time.

1 2015/11/19

§1 Review: Typing

The above inclusion relationships are mathematically appealing, but some of them require caution
in a programming language. In particular, the leap from rationals to reals is dangerous: comput-
ers represent “real” numbers as floating-point numbers, which are very strange approximations
of real numbers. Converting from a rational to a float is liable to result in a number that is close
to the rational, but not close enough. To avoid this problem, we won’t attempt to claim that
rational numbers (as stored in a computer) are a subset of floating-point numbers.

Fortunately, the first two inclusion relationships (positive integers ⊆ integers, and integers ⊆
rationals) are unproblematic. We currently don’t have any of these types, however—only Num,
which includes everything up to and including complex numbers.

In the past, I’ve glossed over exactly what counts as a Num in Fun by waving my hands in the
general direction of Racket’s notion of a number. I’ll be slightly more rigorous now: I’ll restrict
Fun to rational numbers, steering clear of the problematic leap from rationals to floats (which are
fake “reals”), and then wave my hands at the mathematical notion of a rational number (which
I hope is the same as Racket’s).

Types A, B ::= Bool booleans
| A→ B functions from A to B
| A ∗ B products (pairs)
| Pos integers ≥ 0
| Int integers
| Rat rationals

Why would we want to do this? Well, we might want to know that the absolute value of an
integer is always positive. Maybe the result of calling an absolute value function is used as an
index to a string (see previous lecture notes), and we want to avoid having to check that the index
is non-negative. Merely knowing that the index is an integer, rather than an arbitrary rational
number, would eliminate an additional check.

Or, if you prefer, think of these three types as representing a simple class hierarchy in an object-
oriented language. Some aspects of OO inheritance are already present in this context, so we can
use this simpler setting to build up your intuition for how to define classes and inheritance.

(I kind of wanted to jump straight into OO-style subtyping, but instead we’ll approach that
“sideways”. Most OO languages combine what I think of as several different features—records
(things that have fields/instance variables/methods), inheritance (subtyping), mutability, self-
reference—into one, “objects”. But these features don’t have to appear together, and I believe
they can often be better understood separately.)

Adding a type to the grammar isn’t useful unless we can give expressions that type. So let’s add
three typing rules (the third effectively replaces the rule we used to have for Num):

n ∈ Z n ≥ 0
Γ ` (num n) : Pos

Type-pos
n ∈ Z

Γ ` (num n) : Int
Type-int

n ∈ Q
Γ ` (num n) : Rat

Type-rat

Considering just one binary operator, =, will illustrate several aspects of subtyping. Suppose we
have a specialized version of Type-binop, just for =:

Γ ` e1 : Rat Γ ` e2 : Rat
Γ ` (binop (equalsop) e1 e2) : Bool

Type-binop-eq

2 2015/11/19

§2 Subtyping

This is very different from Typed Fun: a single expression, like (num 5), can have more than one
type. (In fact, (num 5) has three different types.) If our entire program is (num n) for some
n, this isn’t a problem. But for more realistic programs, we’ve painted ourselves into a corner.
Consider this silly function:(

lam x Pos (binop (equalsop) (id x) (id x))
)

Ignore how silly this function is. It may be silly, and applying it will always evaluate to (btrue),
but it’s still a function that should typecheck. We won’t be able to, however. In its derivation
we will assume x : Pos, but the premises of Type-binop-eq require (reasonably enough) that the
expressions have type Rat.

But in fact, every closed value (that is, every expression that (1) has no free variables and (2) is
a value) that has type Pos also has type Rat (and Int as well): The only closed values of type Pos
have the form (num n) where n ∈ Z, and Z ⊆ Q, so n ∈ Q, so by rule Type-rat, ∅ ` (num n) : Rat.

Our next steps are:

• Design subtyping rules that define when one type is a subtype of (included in) another type.

• Update our typing rules to make use of the subtyping rules.

Based on the set inclusions {n ∈ Z | n ≥ 0} ⊆ Z and Z ⊆ Q, we can write our first subtyping
rules:

Pos <: Int
Sub-pos-int

Int <: Rat
Sub-int-rat

In set theory, we know that the subset relation is reflexive (every set is a subset of itself) and
transitive (if S1 ⊆ S2 and S2 ⊆ S3, then S1 ⊆ S3). Every subtyping judgment should have these
same properties. The easiest way to ensure this (at least “on paper”) is to add two more rules:

A <: A
Sub-refl

A1 <: A2 A2 <: A3

A1 <: A3
Sub-trans

For now, the only useful application of Sub-trans is to derive Pos <: Rat:

Pos <: Int
Sub-pos-int

Int <: Rat
Sub-int-rat

Pos <: Rat
Sub-trans

These four rules (the general rules Sub-refl and Sub-trans, and the rules specific to our numeric
types, Sub-pos-int and Sub-int-rat) constitute a pretty good, or at least non-broken, subtyping
system. So we can move on to update our typing rules.

2.2 Soundness of subtyping

How do we know that a set of subtyping rules makes sense? For typing rules, we talked about
type safety: if the typing rules say e has type A, and evaluating e produces a value v, that value v
also has type A. Otherwise, the static and dynamic semantics don’t match.

For subtyping, we can define subtype soundness:

3 2015/11/19

§2 Subtyping

Definition 1. Subtype soundness holds if, for all v, A, B such that ∅ ` v : A without using
Type-sub, and A <: B, then ∅ ` v : B without using Type-sub.

Type-sub is a rule we’ll develop below, but since the definition doesn’t let you use that rule within
itself, it’s okay that we haven’t developed it yet!

So, for example, a rule

Rat <: (Rat → Rat)
??Sub-rat-arr

violates subtype soundness, because there exists a v (actually, a whole lot of vs) such that

∅ ` v : Rat

but not
∅ ` v : (Rat → Rat)

In fact, every value of type Rat is a valid counterexample.

2.3 Adding subtyping to the type system

Adding subtyping is easy; adding subtyping that can be easily implemented takes some work.

The easy way is to add a single rule, called the subsumption rule:

Γ ` e : A A <: B

Γ ` e : B
Type-sub

Rule Type-sub says that if we determine that e has type A, and A is a subtype of B, then e has
type B.

Using Type-sub, we can type the function that gave us trouble before:

(x : Pos) ∈ (x : Pos)

x : Pos ` (id x) : Pos
Type-id X

Pos <: Rat

x : Pos ` (id x) : Rat
Type-sub X

x : Pos ` (id x) : Rat
x : Pos ` (binop (equalsop) (id x) (id x)) : Bool

Type-binop-eq

∅ `
(
lam x Pos (binop (equalsop) (id x) (id x))

)
: Pos → Bool

Type-lam

Unfortunately, Type-sub has cheerfully destroyed a useful property of the typing rules: they are
no longer syntax-directed.

Definition 2. A set of typing rules is syntax-directed if, for each syntactic form (variant of the
abstract syntax), only one rule has a conclusion that potentially matches that form.

(Warning: the term “syntax-directed” is sometimes used loosely, or with a slightly different
meaning—but in all the usages I can recall, our typing rules were syntax-directed before we
added Type-sub, and they are now not syntax-directed.)

4 2015/11/19

§2 Subtyping

We exploited this property to write typeof. We also exploited a rather similar property to write
interp: for each variant of the abstract syntax, either one (usually) or two rules have a suitable
conclusion (the variants with two rules being ite and, recently, lazy-ptr). For the variants with
two rules, we could figure out which rule to try by evaluating an expression (ite) or inspecting
the store (lazy-ptr).

Type-sub has broken this property, because Type-sub’s conclusion works for any expression! No
matter what e is, it is possible that we will need to use Type-sub. Even more thrillingly, instead
of making a recursive call to typeof on a smaller expression, Type-sub has us making a recursive
call on the same expression! Thus, if we implement our typing rules including Type-sub, we must
be careful not to try to derive

...
Γ ` e : <:

Γ ` e :
Type-sub

<:

Γ ` e :
Type-sub

Fortunately, we never need to apply Type-sub twice in a row, because subtyping is transitive. So
if e = (num 1) and we derived

Γ ` (num 1) : Pos
Type-pos

Pos <: Int
Sub-pos-int

Γ ` (num 1) : Int
Type-sub

Int <: Rat
Sub-int-rat

Γ ` (num 1) : Rat
Type-sub

we could instead have derived

Γ ` (num 1) : Pos
Type-pos X

Pos <: Rat

Γ ` (num 1) : Rat
Type-sub

Transitivity took care of that problem, but we still need to know when to try to apply Type-sub.
Let’s try to figure that out.

What does that mean? Well, some of the rules, like Type-pair, just don’t care:

Γ ` e1 : A1 Γ ` e2 : A2
Γ ` (pair e1 e2) : A1 ∗A2

Type-pair

This rule makes no demands on A1 and A2. We never need to use Type-sub as the last (bottom-
most) step of deriving Γ ` e1 : A1 or Γ ` e1 : A2. (Note that we might need Type-sub somewhere
inside the derivations of these premises, but not as the last step.)

Other rules do require something about the types. For example, Type-pair-case requires that the
type of the scrutinee e be a product type A1 ∗ A2. The rule itself doesn’t care what A1 and A2
are, but e has to be some kind of product and not, say, Rat or Pos → Pos.

Γ ` e : (A1 ∗A2) x1 : A1, x2 : A2, Γ ` eBody : B

Γ ` (pair-case e x1 x2 eBody) : B
Type-pair-case

5 2015/11/19

§2 Subtyping

However, here we also don’t need to use Type-sub, because (for the moment) we don’t have any
subtyping for products—except reflexivity: (A1 ∗A2) <: (A1 ∗A2)—so it won’t do us any good.
If we did have subtyping for product types, we still wouldn’t want to use it!

Suppose we added some rules so that (Pos ∗ Int) <: (Int ∗ Int), and then tried to derive

Γ ` e : (Pos ∗ Int)
Γ ` e : (Int ∗ Int)

Type-sub
x1 : Int, x2 : Int, Γ ` eBody : B

Γ ` (pair-case e x1 x2 (app (id pow2) (id x1))︸ ︷︷ ︸
eBody

) : B
Type-pair-case

where Γ = (pow2 : Pos → Pos).

The idea is that pow2 is a Fun function such that (app (id pow2) (num k)) returns the kth power
of 2, for integers k ≥ 0. This function only works for nonnegative integer powers (otherwise it
would have to deal with cases like raising 2 to the power 1/3), so its type is Pos → · · · .
(The result of raising 2 to such a power is always a nonnegative integer, so its result type is also
Pos. But it’s the domain of pow2 that matters in this example.)

I haven’t chosen an e yet; I can use a pair whose first component is a positive integer, and whose
second component is an integer:

e = (pair (num 3) (num 4))

I’m missing a derivation for Γ ` e : (Pos ∗ Int); I’ll leave that as an exercise:

Exercise 3. Complete the derivation tree:

Γ ` (pair (num 3) (num 4)) : (Pos ∗ Int)

(If you used Type-sub to do this, try it again without using Type-sub.)

Returning to the above example, and assuming you did the exercise, the derivation tree we have
so far is

X
Γ ` e : (Pos ∗ Int)
Γ ` e : (Int ∗ Int)

Type-sub
x1 : Int, x2 : Int, Γ ` eBody : B

Γ ` (pair-case e x1 x2 (app (id pow2) (id x1))︸ ︷︷ ︸
eBody

) : B
Type-pair-case

Now we want to derive

x1 : Int, x2 : Int, Γ ` (app (id pow2) (id x1))︸ ︷︷ ︸
eBody

: B

6 2015/11/19

§2 Subtyping

Trying Type-app, we get

x1 : Int, x2 : Int, Γ ` (id pow2) : (Pos → Pos) x1 : Int, x2 : Int, Γ ` (id x1) : Pos
x1 : Int, x2 : Int, Γ ` (app (id pow2) (id x1))︸ ︷︷ ︸

eBody

: Pos
Type-app

The first premise can be derived with Type-id, recalling that Γ = (pow2 : Pos → Pos).

But the second premise can’t be derived! We know that x1 is an integer, but we don’t know
that it’s a positive integer. We knew that the scrutinee had type Pos ∗ Int, but we forgot that
information when we used Type-sub.

The lesson here is not to use Type-sub unless you really need to. One place where we do need
to use Type-sub is Type-binop-eq, which requires that the expressions being compared have type
Rat.

3 Developing subtyping

Once we decide that the values of a type can also be values of another, larger type, subtyping
becomes another (nested) step in the recipe of adding a feature to the language:

1. Extend the concrete syntax.

2. Extend the abstract syntax.

3. Extend the dynamic semantics (e.g. environment-based evaluation rules).

4. For a typed language, extend the static semantics (e.g. typing rules):

(a) For a language with subtyping, extend the subtyping rules.

5. (Not in CPSC 311.) Prove desirable properties of the language (e.g. type safety).

(Steps 3–4 need not be done in that order.)

We’re adding subtyping rather late in the game, but we can go back through the features we’ve
built up, adding subtyping to them.

3.1 Product types (pair types)

For products, the subtyping rule works “pairwise”:

A1 <: B1 A2 <: B2

(A1 ∗A2) <: (B1 ∗ B2)
Sub-product

For example, every pair of an Int and a Bool is also a pair of a Rat and a Bool:

Int <: Rat
Sub-int-rat

Bool <: Bool
Sub-refl

(Int︸︷︷︸
A1

∗Bool︸︷︷︸
A2

) <: (Rat︸︷︷︸
B1

∗Bool︸︷︷︸
B2

)
Sub-product

7 2015/11/19

§3 Developing subtyping

3.2 Lists

For lists, we can follow the pattern of pairs (for this purpose, the Lispish notion that a list is
“really” a pair is not wrong):

A <: B

(List A) <: (List B)
Sub-list

For example, every list of positive integers is also a list of integers.

Notice that for both products and lists, the subtyping in the premise(s) “goes the same way” as
the subtyping in the conclusion: In Sub-list, A appears on the left of <: in the conclusion, and in
the premise. In Sub-product, A1 appears on the left of <: in the conclusion, and also on the left
of <: in a premise; A2 works similarly.

Because the subtyping goes the same way, Sub-product and Sub-list are said to be covariant.

3.3 Functions

A function type A1 → A2 has two types inside it, a domain of inputs A1 and a range of outputs
(or “codomain”) A2. Following the pattern of Sub-product, we get

A1 <: B1 A2 <: B2

(A1→ A2) <: (B1→ B2)
??Sub-arr

However, to quote John Reynolds, “As usual, something funny happens at the left of the arrow.”
(This is one of the enduring truths of programming languages.) Using ??Sub-arr, we can derive

Int <: Rat
Sub-int-rat

Bool <: Bool
Sub-refl

(Int → Bool) <: (Rat → Bool)
??Sub-arr

This should mean that, if we expect to be given a function of type (Rat → Bool), we should be
happy with a function of type (Int → Bool). But a function of type (Int → Bool) is only half as
good as one of type (Rat → Bool), because a function whose domain is Rat can be applied to any
rational number, while a function whose domain is Int can only be applied to integers.

Informally, ??Sub-arr is validating false advertising: a function that only handles integers should
not be able to pass itself off as a function that handles all rational numbers.

More formally, rule ??Sub-arr violates the Liskov[–Wing] (1994) “Subtype Requirement” (often
called the “Liskov substitution principle”):

Let ϕ(x) be a property provable about objects x of type T .
Then ϕ(y) should be true for objects y of type S where S is a subtype of T .

As our propertyΦ we can essentially use type safety: a property of functions f of type Rat → Bool
is that, when applied to any value of type Rat, certain errors will not occur.

8 2015/11/19

§3 Developing subtyping

However, this property is not true of all functions g of type Int → Bool: type safety tells us that,
for any function g : (Int → Bool), if we apply g to any value of type Int, certain errors will not
occur.

But that doesn’t tell us that those errors will not occur for arguments that are not integers. Here,
it’s useful to recall something from our treatment of strings in Typed Fun (15-strings.pdf). We
added an expression nth that returned the nth character in a string:

eS ⇓ (str s1) eIdx ⇓ (num n) n ∈ Z n ≥ 0 n < len(s1)

(nth eS eIdx) ⇓ (str s1n)
Eval-nth

Γ ` eS : A1 A1 = String Γ ` eIdx : A2 A2 = NumRat

Γ ` (nth eS eIdx) : String
Type-nth

Since we only had a generic Num type, whenever we evaluated nth we had to check that the
index evaluated to a number that was (1) an integer, (2) ≥ 0, and (3) less than the length of the
string.

Now that we have a type Int, we can remove the check for n being an integer from Eval-nth,
provided Type-nth checks that eIdx is an Int and not merely a Rat:

eS ⇓ (str s1) eIdx ⇓ (num n) n ∈ Z n ≥ 0 n < len(s1)

(nth eS eIdx) ⇓ (str s1n)
Eval-nth

Γ ` eS : A1 A1 = String Γ ` eIdx : A2 A2 = NumRat Int

Γ ` (nth eS eIdx) : String
Type-nth

Let g be the function
(lam x Int (nth (str "hello") (id x)))

which has type Int → Bool. Applying g to a Rat, say 2.5, will lead to an error that should be
impossible: taking the 2.5th character of a string.

So rule ??Sub-arr doesn’t work. (Some people call the relation described by ??Sub-arr “naïve
subtyping”. I do not approve: subtyping that uses ??Sub-arr is not a form of subtyping that
is naïve, it’s not subtyping at all! If you want even more disapproval of this term, consult Ron
Garcia.)

A rule that does work is this one, which is contravariant in the domain, meaning the subtyping
“goes the other way” in the premise for the function domains A1 and B1:

B1 <: A1 A2 <: B2

(A1→ A2) <: (B1→ B2)
Sub-arr

9 2015/11/19

§3 Developing subtyping

3.4 Refs

Γ ` e : A Under assumptions Γ , expression e has type A

Γ ` e : A A <: B

Γ ` e : B
Type-sub

(x : A) ∈ Γ
Γ ` (id x) : A

Type-var

Γ ` (num n) : Num
Type-num

op : A1 ∗A2→ B Γ ` e1 : A1 Γ ` e2 : A2
Γ ` (binop op e1 e2) : B

Type-binop

Γ ` (bfalse) : Bool
Type-false

Γ ` (btrue) : Bool
Type-true

Γ ` e : Bool Γ ` eThen : A Γ ` eElse : A
Γ ` (ite e eThen eElse) : A

Type-ite

x : A, Γ ` eBody : B

Γ ` (lam x A eBody) : A→ B
Type-lam

Γ ` e1 : A→ B Γ ` e2 : A
Γ ` (app e1 e2) : B

Type-app

Γ ` e1 : A1 Γ ` e2 : A2
Γ ` (pair e1 e2) : A1 ∗A2

Type-pair
Γ ` e : A1 ∗A2 x1 : A1, x2 : A2, Γ ` eBody : B

Γ ` (pair-case e x1 x2 eBody) : B
Type-pair-case

Γ ` e : A x : A, Γ ` eBody : B

Γ ` (with x e eBody) : B
Type-with

u : B, Γ ` e : B
Γ ` (rec u B e) : B

Type-rec

Γ ` (list-empty A) : List A
Type-empty

Γ ` e1 : A Γ ` e2 : List A
Γ ` (list-cons e1 e2) : List A

Type-cons

Γ ` e : List A Γ ` eEmpty : B xh : A, xt : List A, Γ ` eCons : B
Γ ` (list-case e eEmpty xh xt eCons) : B

Type-list-case

Γ ` e : A
Γ ` (ref e) : Ref A

Type-ref
Γ ` e : Ref A
Γ ` (deref e) : A

Type-deref
Γ ` e1 : Ref A Γ ` e2 : A

Γ ` (setref e1 e2) : A
Type-setref

Figure 1 Typing rules for Typed Fun with pairs, lists, and refs

10 2015/11/19

§3 Developing subtyping

3.4.1 Subtyping for refs

Following the pattern of List, we might write a covariant rule for references:

A <: B

(Ref A) <: (Ref B)
??Sub-ref

By this rule, (Ref Int) <: (Ref Rat). However, if you expect something of type Ref Rat and I give
you an expression of type (Ref Int), you can use setref to replace the reference’s contents with 3.5
(because, to you, it is a Ref Rat and you can assign any Rat to it).

So we might try contravariance:

B <: A

(Ref A) <: (Ref B)
??Sub-ref-2

Now, however, if you expect something of type (Ref Int) and deref it, expecting an Int, you may
be disappointed: By ??Sub-ref-2, (Ref Rat) <: (Ref Int). But the contents of (Ref Rat) could be 3.5
or any rational number, not necessarily an integer.

The covariant rule ??Sub-ref works fine with deref, but not with setref; the contravariant rule
??Sub-ref-2 works fine with setref, but not with deref. So the covariant rule enforces a necessary
condition for deref, and the contravariant rule enforces a necessary condition for setref. Therefore,
a correct rule is:

A <: B B <: A

(Ref A) <: (Ref B)
Sub-ref

which enforces both conditions.

(We might try to “optimize” this rule by replacing the premises with A = B. This is probably okay
for this system, but doesn’t work for all type systems, so I’d rather leave it as is.)

The following may be a useful additional explanation, particularly if you understand contravari-
ant subtyping for function types A1 → A2. We can think of a reference as an object with two
methods, called deref and setref:

• The deref “method” has no arguments (we are thinking of this, for the moment, as a class
method, so the reference to “self” or “this” is implicit), and returns (for a reference of type
(Ref A)) a value of type A.

So we can think of the type of deref as () → A, where () represents taking zero arguments.

• The setref “method” takes one argument, of type A (assuming the reference has type
(Ref A)). It also returns the value of the argument. So we can think of the type of se-
tref as A→ A.

Thus, the deref “method” has type () → A and setref has typeA→ A. According to the contravari-
ant rule for functions, Sub-arr, we can compare the types of the deref method of a reference of
type (Ref A) and the deref method of a reference of type (Ref B) as follows:

() <: () A <: B

(() → A) <: (() → B)
Sub-arr

11 2015/11/19

§3 Developing subtyping

The second premise here matches the covariant premise of Sub-ref. (Regardless of whatever ()
is, exactly, the first premise is derivable using Sub-refl.)

For setref, we get
B <: A A <: B

(A→ A) <: (B→ B)
Sub-arr

The second premise here is something of an accident: we happened to decide that setref should
return the new contents just written to the reference. If we said, instead, that setref returned
“nothing”, which we seem to be writing as (), then we would have

B <: A () <: ()

(A→ ()) <: (B→ ())
Sub-arr

3.5 Upper bounds

Something I hadn’t thought of by Monday’s lecture: there are a few more places where we need
to use Type-sub. We need to use it in Type-ite; otherwise, typeof will return false for the
expression

(ite (btrue) (num 1) (num −1))

This is because (num 1) has type Pos, and (num −1) has type Int, but Pos 6= Int. So when
we implement Type-ite, we need to find the upper bound of the types of the eThen and eElse
branches:

Γ ` e : Bool Γ ` eThen : A Γ ` eElse : A
Γ ` (ite e eThen eElse) : A

Type-ite

Γ ` e : B B = Bool Γ ` eThen : A1 Γ ` eElse : A2 A1 = A2

Γ ` (ite e eThen eElse) : A1
Type-ite

Γ ` e : B B <: Bool Γ ` eThen : A1 A1 <: A Γ ` eElse : A2 A2 <: A

Γ ` (ite e eThen eElse) : A
Type-ite*

This last version of Type-ite, marked *, is really just the original Type-ite with three uses of
Type-sub:

Γ ` e : B B <: Bool

Γ ` e : Bool
Type-sub

Γ ` eThen : A1 A1 <: A

Γ ` eThen : A
Type-sub

Γ ` eElse : A2 A2 <: A

Γ ` eElse : A
Type-sub

Γ ` (ite e eThen eElse) : A
Type-ite

That is, Type-ite* is an easier rule to implement, but Type-ite* isn’t adding any power to the type
system. (It’s harder, actually, to prove that Type-ite* isn’t taking anything away from the type
system. But I’m pretty sure it isn’t.)

We also need to do this in some other rules, such as Type-list-case, so I wrote a function upper-bound
that takes two types A and B, and returns A if B <: A, and B if A <: B. See the updated version
of subtyping.rkt.

12 2015/11/19

	
	
	Our first subtyping system
	Soundness of subtyping
	Adding subtyping to the type system

	
	Product types (pair types)
	Lists
	Functions
	Refs
	Subtyping for refs

	Upper bounds

