4.3 Substitution

$$
\text { subst (arguments) }=\text { result }
$$

Substitution for Fun ++ abstract syntax

$$
\begin{aligned}
\operatorname{subst}((\text { pair-case e } \times 1 \times 2 \mathrm{eB}), \times, \mathrm{e} 2)= & (\text { pair-case } \operatorname{subst}(e, x, e 2) \times 1 \times 2 \mathrm{eB}) \\
& \text { if } x=x 1 \text { or } x=\times 2
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{subst}((\text { pair-case e } x 1 \times 2 \mathrm{eB}), x, e 2)= & (\text { pair-case } \operatorname{subst}(e, x, e 2) \times 1 \times 2 \operatorname{subst}(e B, x, e 2)) \\
& \text { if } x \neq x 1 \text { and } x \neq x 2
\end{aligned}
$$

$$
\operatorname{subst}((\operatorname{rec} x e B), x, e 2)=(\operatorname{rec} x e B)
$$

$$
\begin{aligned}
\operatorname{subst}((\operatorname{rec} y e B), x, e 2)= & (\operatorname{rec} y \operatorname{subst}(e B, x, e 2)) \\
& \text { if } x \neq u
\end{aligned}
$$

$$
\text { if } x \neq y
$$

Alternate:

$$
\begin{aligned}
& \square \operatorname{subst}((\text { numb } n), x, e 2)=(\text { nom } n) \\
& {\left[\begin{array}{l}
\operatorname{subst}((\mathrm{id} x), x, e 2)=e 2 \\
\operatorname{subst}(\text { id } y), x, e 2)=(\text { id }
\end{array}\right.} \\
& \operatorname{subst}((\operatorname{lam} \times e B), x, e 2)=(\operatorname{lam} x e B) \\
& \operatorname{subst}((\operatorname{lam} y e B), x, e 2)=(\operatorname{lam} y \operatorname{subst}(e B, x, e 2)) \\
& \text { if } x \neq y \\
& {[\text { subs ((app Fun erg) }, x, e 2)=(\text { app } \operatorname{subst}(e F u n, x, e 2) \operatorname{subst}(e A r g, x, e 2))} \\
& \operatorname{subst}((\text { binop op } e \mathrm{~L} e \mathrm{R}), x, e 2)=(\text { binop op } \operatorname{subst}(e L, x, e 2) \operatorname{subst}(e R, x, e 2)) \\
& \operatorname{subst}((\text { pair } e L e R), x, e 2)=[\text { pair subs }(e L, x, e 2) \operatorname{subst}(e R, x, e 2)) \text { show alternate } \\
& \text { subst((bfalse), } x, \text { er) }=\text { (false) } \\
& \text { subst((btrue), } x, e 2)=\text { (true) } \\
& \operatorname{subst}((\text { ito } e \text { Then } e E l s e), x, e 2)=(\text { ide } \operatorname{subst}(e, x, e 2) \operatorname{subst}(e \text { Then, } x, e 2) \operatorname{subst}(e E l s e, x, e 2)) \\
& {\left[\begin{array}{rl}
\operatorname{subst}((\text { with } x \text { e dB }), x, e 2)= & (\text { with } x \operatorname{subst}(e, x, e 2) \mathrm{eB}) \\
\operatorname{subst}((\text { with } y \text { e dB }), x, e 2)= & (\text { with } y \operatorname{subst}(e, x, e 2) \operatorname{subst}(e B, x, e 2)) \\
& \text { if } x \neq y
\end{array}\right.} \\
& {\left[\begin{array}{rl}
\operatorname{subst}\left(\left(\text { with }^{*}() e B\right), x, e 2\right) & =\left(\text { with* }^{*}() \operatorname{subst}(e B, x, e 2)\right)_{a} \\
\operatorname{subst}\left(\left(\text { with }^{*}((x e), \text { bindings }) e B\right), x, e 2\right) & \left.=\left(\text { with* }^{*}((x \operatorname{subst}(e, x, e 2)) \text { bindings }) e B\right)\right]
\end{array}\right.} \\
& \left\{\operatorname{subst}\left(\left(\text { with* }^{*} \underline{((y e) \text { bindings })} \mathrm{eB}\right), x, e 2\right)=\frac{\left[\left(\text { with* }^{*}((y \operatorname{subst}(e, x, e 2)) \text { bindings'}) e B^{\prime}\right)\right]}{\text { if } x \neq y}\right. \\
& \text { Where }{ }^{\text {and }} \operatorname{subst}((\text { with* bindings } e B), x, e 2)=\left(\text { with* bindings }^{\prime} e B^{\prime}\right)
\end{aligned}
$$

$$
\underset{\text { subst }(\text { (pair eLeR }), x, e 2)=}{ } \begin{aligned}
& \text { where }
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { ere } \\
& \text { subst }(e L, x, e 2)=e L^{\prime} \\
& \text { e }
\end{aligned}
$$

$$
\text { and subst } \operatorname{subs}(e R, x, e 2)=e R^{\prime}
$$

(aliennate:
Suppose

$$
\begin{aligned}
& \text { se } \\
& \operatorname{subst}(e l, x, e 2)=e L^{\prime} \\
& \text { cubst }(e R, x, e 2)=e R^{\prime}
\end{aligned}
$$

(pair el-mbutre)) \quad Return (pair el'el'e l^{\prime}).)

