
CPSC 311: Definition of Programming Languages:
Environments

18-env
DRAFT

Joshua Dunfield
University of British Columbia

November 2, 2015

1 Midterm question titles

• “A substitutable cat”: I haven’t seen a cat near SWNG, but I have seen a fox on the West
Mall sidewalk.

• “The Future”: Various songs have this title; the one I was thinking of is by the Toronto-based
band Austra.

• “Add All Things”: A room in one of the McGill libraries has “PROVE ALL THINGS” carved
into the wall.

• “Little Perennials”: a song by the Indigo Girls.

• “And so it begins. . . ”: title chosen by one of the TAs.

• “Speaking in Tongues”: title of an album by the Talking Heads, and a song by Arcade Fire.

1 2015/11/2



§1 Midterm question titles

2 The trouble with substitution

We’ve defined dynamic semantics in two different ways: big-step and small-step. In both, we
used substitution to define what expressions with identifiers (variables) mean: a with expression
evaluates its bound expression, and immediately replaces all the instances of the bound identi-
fier with that expression. Functions (lam/app) and recursion (rec) also were given meaning via
substitution.

Our notion of substitution is directly descended from Church’s λ-calculus, but as a general (and
less precise) notion, substitution is older: in algebra we can substitute 5 for x in

x2 + 3

to get 52 + 3. (I don’t think the ancient syllogisms of Greece and India—“Socrates is a man, all
men are mortal, therefore Socrates is mortal”; “This hill is smoky; whatever is smoky is fiery (for
example: a kitchen); therefore this hill is fiery”1—are truly substitution: there are no variables.)

The connection to the λ-calculus, which was shown to be equivalent in power to Turing machines,
guarantees that substitution is a “right way” of defining how features like with and app work. It
does not mean that substitution is the right way of defining how those features work. In fact,
substitution is (almost?) never used to implement interpreters.

Substitution has several disadvantages, compared to other methods:

• Inefficiency: Every time our interpreter calls subst(e1, x, e2), our implementation of subst
searches for (id x) throughout the entire expression e1. It must do this even if e1 is very
large, and (id x) appears just once (or even not at all!).

• Obscurity: Giving a function (or other expression) a name is important for clarity and con-
venience; we would rather write {app double 5} than {app {lam y {+ y y} 5}}, even
though they give the same result. But a substitution-based interpreter that prints the ex-
pressions it’s evaluating (like visible-interp.rkt does) will show you the latter. This is
perhaps most aggravating with recursive functions.

Against these, we should weigh substitution’s advantages:

• Simplicity: The definition of substitution is more concise and straightforward than other
methods.

• Versatility: While substitution doesn’t “scale” in terms of performance (see “Inefficiency”
above), it “scales up” well across a variety of language features. The same, relatively sim-
ple, style of defining substitution works for languages with functions that return functions
(“first-class” functions) and for recursive functions. Environments are more brittle: adding
new features sometimes requires us to define environment in a way that is more compli-
cated (rather than just being longer, as is the case with substitution).

Whether or not you prefer environments, you should learn about them, especially if you plan to
take CPSC 411.

1Adapted from Vidyabhusana, A History of Indian Logic (1920), p. 61.

2 2015/11/2



§3 Environments

3 Environments

The idea of environment-based dynamic semantics is that, to evaluate (with x e2 e1), we won’t
evaluate e2 to v2 and then substitute v2 for x; instead, we will evaluate e2 to v2, and “remember”
the fact that x has the value v2. This fact will be stored in an environment that maps identifiers
to values. If and when we need to evaluate an instance of x in the body e1, that is, if we need to
evaluate (id x), we look up x and use the value we find, which will be v2.

In a sense, we are simulating substitution: if we had substituted v2 for x, we would find v2 inside
the body e1.

3.1 Back to basics: WAE

Because environments are more brittle than substitution, I think it’s better to “roll back” our Fun
language to WAE (arithmetic expressions and with), define the simplest possible environments,
and then carefully evolve our notion of an environment as we restore language features.

Quoting 04-operational.pdf:

〈WAE〉 ::= 〈num〉
| {+ 〈WAE〉 〈WAE〉}
| {- 〈WAE〉 〈WAE〉}
| {with {〈id〉 〈WAE〉} 〈WAE〉}
| 〈id〉

(define-type WAE
[num (n number?)]
[add (lhs WAE?) (rhs WAE?)]
[sub (lhs WAE?) (rhs WAE?)]
[with (name symbol?) (named-expr WAE?) (body WAE?)]
[id (name symbol?)])

3 2015/11/2



§3 Environments

3.2 Mapping identifiers to expressions

To get an idea of what is needed, consider the WAE expression (in abstract syntax)

(with x (num 3) (with y (num 4) (add (id x) (id y))))

If we don’t use substitution, when we evaluate (add (id x) (id y)) we need to remember that xwas
bound to (num 3), and y was bound to (num 4). We need a “lookup table” that maps identifiers
to expressions.

In Typed Fun, we used a typing context Γ to map identifiers to types, and defined what those
contexts were with a grammar:

Typing contexts Γ ::= ∅ empty context (no assumptions)
| x : A, Γ x has type A, with more assumptions

We’ll do the same for environments:

Environments (for WAE) env ::= ∅ empty environment
| x=e, env x bound to e, with “more environment”

(It would be more standard to use the Greek letter rho (ρ), rather than “env”, but we’ve used
enough Greek letters for now.)

For consistency with typing contexts Γ , environments env will grow to the left, like cons-lists in
Racket.

Let’s consider an even smaller example than the one above.

(with y (num 4) (add (num 3) (id y)))

If this expression is the entire program, it’s not inside any withs, so the environment env is empty
when we start evaluating.

Regardless of how environments work, (num 4) should still evaluate to (num 4). But now we need
to remember that y is (num 4), so we’ll need to evaluate the body (add (num 3) (id y)) under the
environment

y=(num 4), ∅

(It’s okay to write this as just y=(num 4); here, I want to emphasize that we started with ∅, and
are growing the environment leftwards.)

Then, while evaluating (id y) in (add (num 3) (id y)), we will look up (id y) in the current environ-
ment y=(num 4), ∅, and evaluation will behave as if we were evaluating (add (num 3) (num 4)).

Just as we used Γ in the typing judgment Γ ` e : A, we’ll use env in a new environment-based
evaluation judgment form

env ` e ⇓ v
We’ll also assume that a “lookup function” lookup(env, x) has been defined, so that

lookup(env, x) = e

if the environment env contains x=e. (In our Racket code, we have a function look-up-id.)

4 2015/11/2



§3 Environments

I think we have enough to revise the evaluation rules for WAE. What were those?

e ⇓ v WAE expression e evaluates to value v

(num n) ⇓ (num n)
Eval-num

e1 ⇓ (num n1) e2 ⇓ (num n2)

(add e1 e2) ⇓ (num n1+ n2)
Eval-add

e1 ⇓ (num n1) e2 ⇓ (num n2)

(sub e1 e2) ⇓ (num n1− n2)
Eval-sub

e1 ⇓ v1 subst(e2, x, v1) ⇓ v2
(with x e1 e2) ⇓ v2 Eval-with

(id x) free-variable-error
Eval-free-identifier

env ` e ⇓ v Under environment env,
WAE expression e evaluates to value v

env ` (num n) ⇓ (num n)
Env-num

e1 ⇓ (num n1) e2 ⇓ (num n2)

(add e1 e2) ⇓ (num n1+ n2)
Env-add

e1 ⇓ (num n1) e2 ⇓ (num n2)

(sub e1 e2) ⇓ (num n1− n2)
Env-sub

e1 ⇓ v1 ⇓ v2
(with x e1 e2) ⇓ v2 Env-with

(id x) ⇓ Env-id

unknown-id-error
Env-unknown-id

Exercise 1. (Do it tonight, before class, if feasible.)
I left some blank space in the “Env-. . . ” rules. Fill it in with whatever is needed. Env-num is
finished, and you can follow that pattern for some of the other rules.

If you’re not sure how to start, I already updated part of the function env-interp in env-with-broken.rkt
(link on the notes page) to reflect how I would fill in Env-add and Env-sub, so you can map back
from that code if you like. But I haven’t written the code for the more interesting rules yet. . .

The completed rules are on the next page.

5 2015/11/2



§3 Environments

e ⇓ v WAE expression e evaluates to value v

(num n) ⇓ (num n)
Eval-num

e1 ⇓ (num n1) e2 ⇓ (num n2)

(add e1 e2) ⇓ (num n1+ n2)
Eval-add

e1 ⇓ (num n1) e2 ⇓ (num n2)

(sub e1 e2) ⇓ (num n1− n2)
Eval-sub

e1 ⇓ v1 subst(e2, x, v1) ⇓ v2
(with x e1 e2) ⇓ v2 Eval-with

(id x) free-variable-error
Eval-free-identifier

env ` e ⇓ v Under environment env,
WAE expression e evaluates to value v

env ` (num n) ⇓ (num n)
Env-num

env ` e1 ⇓ (num n1) env ` e2 ⇓ (num n2)

env ` (add e1 e2) ⇓ (num n1+ n2)
Env-add

env ` e1 ⇓ (num n1) env ` e2 ⇓ (num n2)

env ` (sub e1 e2) ⇓ (num n1− n2)
Env-sub

env ` e1 ⇓ v1 x=v1, env ` e2 ⇓ v2
env ` (with x e1 e2) ⇓ v2 Env-with

lookup(env, x) = e

env ` (id x) ⇓ e Env-id

lookup(env, x) undefined

env ` (id x) unknown-id-error
Env-unknown-id

3.3 The Shadow Chancellor2 Strikes Back

With substitution, we saw that expressions that repeatedly bind the same identifier are evaluated
with the inner binding “shadowing” the outer one, so that

(with x (num 1) (with x (num 2) (id x)))

evaluates to (num 2), not (num 1). The environment-based semantics will behave the same way,
but only because of a particular way we’re defining lookup: it starts looking from the left.

∅ ` (num 1)⇓ (num 1)

Env-num

x=(num 1), ∅ ` (num 2)⇓ (num 2)

Env-num lookup
(
(x=(num 2), x=(num 1), ∅), x

)
= (num 2)

x=(num 2),x=(num 1), ∅ ` (id x) ⇓ (num 2)
Env-id

x=(num 1), ∅ ` (with x (num 2) (id x)) ⇓ (num 2)
Env-with

∅ ` (with x (num 1) (with x (num 2) (id x))) ⇓ (num 2)
Env-with

We should really define lookup using rules; I’ll leave that as an exercise (next page).

Exercise 2. Fill in the rules below, which derive a judgment lookup(env, x) = e:

(Feel free to translate “backwards” from the Racket implementation of look-up-id.)

2At some point, the UK Parliament becomes indistinguishable from a bad fantasy novel.

6 2015/11/2



§3 Environments

lookup(∅, x) =
lookup-empty

lookup
(
(x=e, env), x

)
=

lookup-found
lookup

(
(y=e, env), x

)
=

lookup-next

3.4 Question Period

Question:
The expression after the “⇓” should always be a value. Shouldn’t Env-id evaluate e to v?

It could, but it doesn’t need to: the expressions we put into environments are all values. The only
rule that adds anything to the environment is Env-with, and the expression it adds is v1, which
is a value.

Question: Could Env-with not evaluate e1, and put e1 into the environment, instead?

In that case, Env-id would need to evaluate the expression it gets from lookup. That would give
us an “expression strategy” for with. That’s inconsistent with our substitution-based semantics,
but it’s not wrong; it’s just not what I want to do.

Question: What if Env-with puts e1 into the environment, and Env-id evaluates that expres-
sion to get v1, and then updates the environment with v1? Would that gives us lazy evaluation?

You could certainly implement that—for example, using Racket’s mutable “boxes”. Moreover,
we could model it using rules. But the rules would need to be rather different from the above
rules, which derive the judgment form env ` e ⇓ v. That judgment can’t model a change to
the environment; the above rules can only add to the environment inside a premise. So if your
environment is

x=(add (num 1) (num 1)), ∅︸ ︷︷ ︸
env

and you evaluate (add (id x) (id x)), you can’t “transmit” the updated env from the first premise
to the second premise. Rules and derivations aren’t mutable.

env ` (id x) ⇓ (num 2) env ` (id x) ⇓ (num 2)

x=(add (num 1) (num 1)), ∅︸ ︷︷ ︸
env

` (add (id x) (id x)) ⇓ (num 4)
Env-add

However, you could change the judgment form to something like

env ` e ⇓ v, env ′
which could be read “starting in environment env, evaluating expression e produces value v
and an environment env ′.” Then the conclusion of the rule for id could have the “updated”
environment as env ′.

We’ll need to do something like this to model mutable state (hopefully, next week).

7 2015/11/2


	
	
	
	Back to basics: WAE
	Mapping identifiers to expressions
	The Shadow ChancellorAt some point, the UK Parliament becomes indistinguishable from a bad fantasy novel. Strikes Back
	Question Period


