
CPSC 311: Definition of Programming Languages:
Polymorphism

17-polymorphism
DRAFT

Joshua Dunfield
University of British Columbia

October 29, 2015

1 What is polymorphism?

In a language with polymorphism (poly = many; morph = form), some features of the language
can operate with multiple types. “Some features” and “can operate with” are deliberately vague:
there are many kinds of polymorphism, and a given language might allow one kind for some
language fatures, under some circumstances, and another kind of polymorphism in others.

2 Kinds of polymorphism

In 1967, Christopher Strachey (who made important contributions to programming language
semantics, and designed a key ancestor of C) distinguished two kinds of polymorphism:

• parametric polymorphism, and

• ad hoc polymorphism.

A further kind of polymorphism (quite likely the kind you’ve used the most) is subtype polymor-
phism, also called inclusion polymorphism. Perhaps ill-advisedly, I’m going to discuss subtype
polymorphism when we (almost certainly) discuss subtyping later in 311. (At that point, I might
try to argue that subtype polymorphism is a special case of ad hoc polymorphism.)

2.1 Examples of parametric polymorphism

In parametric polymorphism, types include type variables that can be instantiated.

(see 17-poly.sml)

To understand these types, we should really write the quantifiers that SML (implicitly) puts
around these types. For example, identity_function has type

∀α. (α→ α) “for all types α, . . . ”

That is, any code that calls identity_function can provide something of any type it chooses,
and will (if evaluation results in a value!) get back something of that same type.

1 2015/10/29



§1 What is polymorphism?

identity_function 5;
identity_function (1, 2);

In the first line above, 5 has SML type int, so SML instantiates α with int, resulting in the type

(int → int)

Applying a function of type (int → int) to an int results in an int, so identity_function 5
has type int.

A larger example is map_list, which has the polymorphic type

∀α.
(
∀β. (α→ β) → (α list) → (β list)

)
This type says: if you pick types α and β (which, like meta-variables in typing rules, might or
might not be different types), and pass (first) a function of type α→ β and (second) a list whose
elements all have type α, then the value returned by calling map_list (if that call returns at all)
will be a list whose elements are of type β.

(illustrate with map_list make_pair from 17-poly.sml)

The reason this is called parametric polymorphism is that the types α and β don’t matter: the
implementation of map_list doesn’t care what types you instantiate α and β with. In fact, in
SML it is impossible for map_list to know which types α and β have been instantiated with!

If you try to do something that depends on α having a particular type, SML will infer a “less
polymorphic” type instead:

val unpoly_map_list = fn : (bool -> ’b) -> bool list -> ’b list

The fact that a parametrically-polymorphic function cannot inspect its argument’s type means
that we can prove “parametricity properties”, such as:

If a function has type ∀α. (α→ α), and it is applied to a value v of some type A, and
that application evaluates to a value, then the resulting value is exactly v.

Or, suppose a function has type ∀α.
(
(α ∗α) → α

)
. It could return the first part of the pair, or the

second part. Could it do anything else?

2 2015/10/29



§2 Kinds of polymorphism

Turning the question around (sideways?): What functions besides map_list have map_list’s
type?

2.2 Examples of ad hoc polymorphism

A common form of ad hoc polymorphism is operator overloading: in many languages, a single +
operator works on more than one type of argument. For example, in SML, + works on both ints
and reals (though not on string, and not on one int and one real).

2.3 Polymorphism in untyped languages

Is Racket polymorphic? The answer depends on whether we take “type” in the (vague) definition
above to mean a static type (perhaps defined through typing rules), or whether we consider it
more informally, so that, say, 3 and #false in Racket are of different types, even though Racket
has no type system to stop you from compiling a program like (+ 3 #false).

• If we require “type” to mean a static type, then Racket is not polymorphic because, in a
sense, it has only one type: the type of “s-expressions”, which includes numbers, #true and
#false, functions (lambda), lists, and everything else.

This claim is sometimes phrased as “dynamic ‘typing’ is really just unityping”, a “unityped”
language being a (statically) typed language with only one (uni-) type. Thus, Carnegie
Mellon University’s Bob Harper:

“Dynamic typing is but a special case of static typing, one that limits, rather than
liberates... Something can hardly be opposed to that of which it is but a trivial
special case.” (from a 2011 blog post)

Conor McBride (who is also a type-systems researcher, and who might thus be expected to
agree with Harper) responded to this idea as follows:

“. . . in much the way that a punch in the face is a special case of dinner”

That is, a punch may meet some very literal definition of dinner, but it doesn’t meet any
useful definition of dinner.

My opinion is that, presuming that “type” only means a static type, Harper’s claim is true—
but McBride is correct in implying that it’s not particularly illuminating: Even if Harper’s
preference for (statically) typed languages is entirely correct, repeating that “dynamic typing
is a special case of static typing” tells us nothing about why programmers might prefer
“dynamically-typed” (or untyped, or “unityped”) languages.

• If we say that any precise organization of code and/or data into subcategories is “typ-
ing”, then #true and #false can be called “booleans”, (lambda (x) x) can be called a
“function”, and so on. Then Racket is certainly polymorphic, because many functions that
you can write in Racket—for example, (lambda (x) x)—work on many different kinds of
Racket “types”.

3 2015/10/29


	
	
	Examples of parametric polymorphism
	Examples of ad hoc polymorphism
	Polymorphism in untyped languages


