CPSC 311: Definition of Programming Languages: Polymorphism 17-polymorphism DRAFT

Joshua Dunfield University of British Columbia

October 29, 2015

1 What is polymorphism?

In a language with polymorphism (poly = many; morph = form), some features of the language can operate with *multiple types*. "Some features" and "can operate with" are deliberately vague: there are many kinds of polymorphism, and a given language might allow one kind for some language fatures, under some circumstances, and another kind of polymorphism in others.

2 Kinds of polymorphism

In 1967, Christopher Strachey (who made important contributions to programming language semantics, *and* designed a key ancestor of C) distinguished two kinds of polymorphism:

- parametric polymorphism, and
- ad hoc polymorphism.

A further kind of polymorphism (quite likely the kind you've used the most) is *subtype polymorphism*, also called *inclusion polymorphism*. Perhaps ill-advisedly, I'm going to discuss subtype polymorphism when we (almost certainly) discuss subtyping later in 311. (At that point, I might try to argue that subtype polymorphism is a special case of *ad hoc* polymorphism.)

2.1 Examples of parametric polymorphism

In parametric polymorphism, types include type variables that can be instantiated.

(see 17-poly.sml)

To understand these types, we should really write the *quantifiers* that SML (implicitly) puts around these types. For example, identity_function has type

 $\forall \alpha. (\alpha \rightarrow \alpha)$ "for all types $\alpha, ...$ "

That is, any code that calls identity_function can provide something of any type it chooses, and will (if evaluation results in a value!) get back something of that same type.

```
identity_function 5;
identity_function (1, 2);
```

In the first line above, 5 has SML type int, so SML instantiates α with int, resulting in the type

```
(\texttt{int} \rightarrow \texttt{int})
```

Applying a function of type (int \rightarrow int) to an int results in an int, so identity_function 5 has type int.

A larger example is map_list, which has the polymorphic type

$$\forall \alpha. (\forall \beta. (\alpha \rightarrow \beta) \rightarrow (\alpha \text{ list}) \rightarrow (\beta \text{ list}))$$

This type says: if you pick types α and β (which, like meta-variables in typing rules, might or might not be *different* types), and pass (first) a function of type $\alpha \rightarrow \beta$ and (second) a list whose elements all have type α , then the value returned by calling map_list (if that call returns at all) will be a list whose elements are of type β .

(illustrate with map_list make_pair from 17-poly.sml)

The reason this is called *parametric* polymorphism is that the types α and β don't matter: the implementation of map_list doesn't care what types you instantiate α and β with. In fact, in SML it is *impossible* for map_list to know which types α and β have been instantiated with!

If you try to do something that depends on α having a particular type, SML will infer a "less polymorphic" type instead:

val unpoly_map_list = fn : (bool -> 'b) -> bool list -> 'b list

The fact that a parametrically-polymorphic function *cannot* inspect its argument's type means that we can prove "parametricity properties", such as:

If a function has type $\forall \alpha$. ($\alpha \rightarrow \alpha$), and it is applied to a value ν of some type A, and that application evaluates to a value, then the resulting value *is exactly* ν .

Or, suppose a function has type $\forall \alpha$. $((\alpha * \alpha) \rightarrow \alpha)$. It could return the first part of the pair, or the second part. Could it do anything else?

§2 Kinds of polymorphism

Turning the question around (sideways?): What functions *besides* map_list have map_list's type?

2.2 Examples of *ad hoc* polymorphism

A common form of *ad hoc* polymorphism is *operator overloading*: in many languages, a single + operator works on more than one type of argument. For example, in SML, + works on both ints and reals (though not on string, and not on one int and one real).

2.3 Polymorphism in untyped languages

Is Racket polymorphic? The answer depends on whether we take "type" in the (vague) definition above to mean a static type (perhaps defined through typing rules), or whether we consider it more informally, so that, say, 3 and #false in Racket are of different types, even though Racket has no type system to stop you from compiling a program like (+ 3 #false).

• If we require "type" to mean a static type, then Racket is not polymorphic because, in a sense, it has *only one type*: the type of "s-expressions", which includes numbers, #true and #false, functions (lambda), lists, and everything else.

This claim is sometimes phrased as "dynamic 'typing' is *really* just *unityping*", a "unityped" language being a (statically) typed language with only one (*uni-*) type. Thus, Carnegie Mellon University's Bob Harper:

"Dynamic typing is but a special case of static typing, one that limits, rather than liberates... Something can hardly be *opposed* to that of which it is but a trivial special case." (from a 2011 blog post)

Conor McBride (who is *also* a type-systems researcher, and who might thus be expected to agree with Harper) responded to this idea as follows:

"... in much the way that a punch in the face is a special case of dinner"

That is, a punch may meet some very literal definition of dinner, but it doesn't meet any *useful* definition of dinner.

My opinion is that, presuming that "type" only means a static type, Harper's claim is true but McBride is correct in implying that it's not particularly illuminating: Even if Harper's preference for (statically) typed languages is *entirely correct*, repeating that "dynamic typing is a special case of static typing" tells us nothing about *why* programmers might prefer "dynamically-typed" (or untyped, or "unityped") languages.

• If we say that *any* precise organization of code and/or data into subcategories is "typing", then #true and #false can be called "booleans", (**lambda** (x) x) can be called a "function", and so on. Then Racket is certainly polymorphic, because many functions that you can write in Racket—for example, (**lambda** (x) x)—work on many different kinds of Racket "types".