
CPSC 311: Definition of Programming Languages:
More strings, leading into type safety

(“15-strings”)
DRAFT

Joshua Dunfield
University of British Columbia

October 25, 2015

Topics covered

• 2015–10–21 lecture: Sections 1 and 2

• 2015–10–23 lecture: Sections 3 and 4 (?)

Logistics

• a2 stats: mean 78%, median 88%

• There was a wonderful bug in a3.rkt, which I fixed; see Piazza / check your email. I suggest
fixing your copy of a3.rkt, but if you exploit the bug to do Problem 2, you could get full
marks. You’ll probably learn more if you don’t do that, though.

• Practice midterm will be posted today (Friday)

1 a3: lists

List A is the type of lists whose elements are of type A. Not like a Racket list, where a list is an
arbitrary sequence of stuff.

Expanding on the terse remark that list-case is “is a kind of type-case for lists”:

(define-type List-Num
[numlist-empty ()]
[numlist-cons (head number?) (tail List-Num?)])

(type-case List-Num xs
[numlist-empty () branch for when xs is numlist-empty]
[numlist-cons (h t) branch for when xs is numlist-cons])

{list-case xs {empty => branch for when xs is empty}
{cons h t => branch for when xs is cons}}

1 2015/10/25



§1 a3: lists

Within the numlist-cons branch of the Racket/PLAI type-case, the identifiers h and t are bound
to the first and second arguments of numlist-cons. Similarly, within the cons branch of the
Fun list-case, the identifiers h and t are bound to the head (first element) and tail (remaining
elements) of the list xs.

1.1 A useful way to read typing rules

The next page illustrates how to “expand” typing rules so you can implement them more directly.
When you make a recursive call to derive a premise, you can’t constrain in advance what result
you get. If you write the rule a little differently, you get something that matches the code you
write more closely.

2 2015/10/25





§1 a3: lists

2 Strings, continued

2.1 BNFs

Strings 〈S〉 ::= whatever a Racket string is

Cats 〈C〉 ::= 〈S〉
| {+ 〈C〉 〈C〉}

Instead of studying the above (very small!) language, we’ll add its features to one of our versions
of Fun, so that we can see, in a slightly more realistic language, how to define evaluation and
typing for these features.

Expressions 〈E〉 ::= . . . whatever is in typed-lam.rkt
| 〈S〉
| {cat 〈C〉 〈C〉}

| {cat 〈E〉 〈E〉}
| {nth 〈E〉 〈E〉}

I’ve crossed out one of the productions, because I want strings to be interoperable with Fun
expressions, so that we can cat two identifiers, or cat the result of applying two functions, etc.

What is the semantics of nth? It will return the 1-character string at a given index into the string,
which will illustrate some language design alternatives.

2.2 Abstract syntax

(define-type E
.
.
.
[str (s string?)]
[cat (str1 E?) (str2 E?)]
[nth (str E?) (index E?)]

)

4 2015/10/25



§2 Strings, continued

2.3 Evaluation rules

e ⇓ v Expression e evaluates to value v

(str s) ⇓ (str s)
Eval-str

e1 ⇓ (str s1) e2 ⇓ (str s2)
(cat e1 e2) ⇓ (str s1 s2)

Eval-cat

eS ⇓ (str s1) eIdx ⇓ (num n) n ∈ N n < len(s1)

(nth eS eIdx) ⇓ (str s1n)
Eval-nth

The difference between the string s1 and (str s1) is that s1 is a sequence of characters, for which
we can define (or assume) various mathematical functions, while (str s1) is abstract syntax.

In writing the rule Eval-nth, we assumed that N are the natural numbers (and that they start at
0, which is the usual convention in computer science but not necessarily other fields), that len(s)
is a (mathematical) function that returns the number of characters in s, and that a subscript like

s1n

denotes the nth character of the string s1.

We arrived at the third and fourth premises of Eval-nth by something like the following process.

• First, we voted overwhelmingly (apparently influenced by the federal election) that strings
should be indexed from 0 rather than 1.

• Second, we decided (less democratically) to require n to be an integer, rather than taking
the floor bnc. (Because Fun’s numbers are the same as Racket’s numbers, a num in Fun can
be floating-point, rational, or even complex.)

• Third, we decided that n should be required to be in the range 0 ≤ n < len(s1), rejecting a
suggestion that we define it “circularly” by taking n mod len(s1).

(Another possible suggestion: “pin” n to the range, by returning the 0th character when
n < 0, and the last character when n ≥ len(s1). Both this suggestion and the “circular”
suggestion don’t entirely succeed in their questionable goal of always returning something:
what should evaluation do if the string’s length is zero?)

2.4 Errors

What if eIdx evaluates to something that isn’t a num?
What if eS evaluates to something that isn’t a str?
Both of these can be easily prevented using types.

What if eIdx does evaluate to (num n), but n is not an integer? This is feasible to prevent using
types, say, by removing the type Num and putting in Int and Float types instead, but we won’t
pursue that now.

5 2015/10/25



§2 Strings, continued

What if n falls outside the string? This is much more difficult to prevent with a type system, but
it is possible. (During the lecture, an abbreviated and questionable attempt to explain how to do
this occurred.)

2.5 “Going wrong”

A slogan of types advocates is: “Well-typed programs don’t go wrong.”

This slogan only makes sense if we specifically define what “wrong” means. Then, there are
particular kinds of errors that are prevented by the typing rules.

The slogan comes from a paper by Robin Milner (the main inventor of Standard ML), who—
in his defence—did precisely define what he thought “wrong” meant: essentially, it prevented
“agreement errors” like trying to apply a number (that is, to call a number as if it were a function),
or passing a list to a function that expects an integer, and so on. As you all know by now, such
errors happen fairly often, so there’s a strong argument for preventing them.

6 2015/10/25



§2 Strings, continued

3 Typing rules

Γ ` e : A Under assumptions Γ , expression e has type A

Γ ` (str s) : String
Type-str

Γ ` e1 : String Γ ` e2 : String
Γ ` (cat e1 e2) : String

Type-cat

Γ ` eS : String Γ ` eIdx : Num
Γ ` (nth eS eIdx) : String

Type-nth

“Expanding” the above rules as discussed above gives:

Γ ` (str s) : String
Type-str

Γ ` e1 : A1 A1 = String Γ ` e2 : A2 A2 = String

Γ ` (cat e1 e2) : String
Type-cat

Γ ` eS : A1 A1 = String Γ ` eIdx : A2 A2 = Num

Γ ` (nth eS eIdx) : String
Type-nth

7 2015/10/25



§3 Typing rules

4 Type safety

The standard way of showing that a type system really prevents (certain kinds of) errors is to
prove type safety.

Type safety is a result about the relationship between the static semantics and the dynamic se-
mantics. Thus, changing either set of rules can break type safety.

Type safety is more usefully stated for a small-step semantics (e1 −→ e2) rather than for a big-
step evaluation semantics, but you’re more familiar with the big-step semantics, so we’ll start
with that.

Type safety can be divided into two parts: preservation and progress.

4.1 Preservation

Preservation says, roughly, that evaluation “preserves types”: if you run a program of type Bool,
and it evaluates to a value, that value will also have type Bool.

For the big-step semantics e ⇓ v, preservation can be stated as:

If ∅ ` e : A
and e ⇓ v
then ∅ ` v : A.

Preservation is a limited statement that can best be characterized as: “If you got a value, then
it is a reasonable value.” For example, preservation tells you that if the typing rules say that
(app (lam x Num x) (num 3)) is a Num, you won’t somehow get a Bool instead.

The above preservation statement is actually even more limited than it might appear: if evalua-
tion loops infinitely due to a rec, the above preservation result doesn’t help us, because we can
only apply it if e ⇓ v holds.

Nonetheless, preservation should still tell us that some, maybe all, of the errors that interp can
raise will never happen. (You should be skeptical of even this claim! What could go wrong?)

8 2015/10/25



§4 Type safety

For the small-step semantics e1 −→ e2, preservation can be stated as:

If ∅ ` e1 : A
and e1 −→ e2

then ∅ ` e2 : A.

4.2 Progress

For the small-step semantics, progress can be stated as:

If ∅ ` e1 : A then either

• e1 is a value, or

• e1 −→ e2.

For a big-step semantics e ⇓ v, there is (for most languages) no directly corresponding progress
result. The following doesn’t hold for Typed Fun, for example, because of rec.

If ∅ ` e : A
then e ⇓ v.

A key benefit of small-step semantics is that preservation and progress tell us that running a
program, even one that loops infinitely, won’t launch the missiles along the way.

9 2015/10/25


	
	A useful way to read typing rules

	
	BNFs
	Abstract syntax
	Evaluation rules
	Errors
	``Going wrong''

	
	
	Preservation
	Progress


