
CPSC 311: Definition of Programming Languages:
Error rules; small-step semantics and evaluation contexts

(“10-contexts”)

Joshua Dunfield
University of British Columbia

October 10, 2015

Topics discussed

• a judgment is whatever is in the conclusion of a rule, not necessarily e ⇓ v, not necessarily
about evaluation or dynamic semantics

• notation for judgments and rules

• error rules for Fun. . . and more. . . and still more

• small-step semantics

– inside an evaluation derivation, little steps of computation happen

– we can model these with a different judgment

– reduction rules for the actual steps of computation

– rule Step-context and evaluation contexts for finding the subexpression where the ac-
tual step can happen

• BNFs not just for concrete syntax; can also define subsets of abstract syntax

• evaluation contexts: define with a BNF, notation for replacing holes

• note: “evaluation semantics” =⇒ “big-step semantics”

• only need one small-step rule for free variable errors

(the lecture on Friday, 2015/10/02 ended around this point)

(note: I am probably going to skip to something different for Monday’s lecture)

• relating small- and big-step semantics

• small-step semantics and recursion

1 Collected rules for Fun (again)

Figure 1 collects all the rules, again, showing Eval-app-value rather than Eval-app-expr. I added
Eval-rec because it will come in handy.

1 2015/10/10

§1 Collected rules for Fun (again)

In this note I’ll keep using the old Fun language rather than the Fun++ language on the assign-
ment, for tedious reasons (I might give away part of the solution) but also to keep the number of
rules small.

Some additional features of this figure are explained below.

e ⇓ v Expression e evaluates to value v

(num n) ⇓ (num n)
Eval-num

e1 ⇓ (num n1) e2 ⇓ (num n2)

(add e1 e2) ⇓ (num (n1 + n2))
Eval-add

e1 ⇓ (num n1) e2 ⇓ (num n2)

(sub e1 e2) ⇓ (num (n1 − n2))
Eval-sub

e1 ⇓ v1 subst(e2, x, v1) ⇓ v2
(with x e1 e2) ⇓ v2 Eval-with

(lam x e1) ⇓ (lam x e1)
Eval-lam

e1 ⇓ (lam x eB) e2 ⇓ v2 subst(eB, x, v2) ⇓ v
(app e1 e2) ⇓ v Eval-app-value

subst(e, u, (rec u e)) ⇓ v

(rec u e) ⇓ v Eval-rec

e free-variable-error e raises a free variable error

(id x) free-variable-error
FVerr-id

Figure 1 Evaluation rules for Fun

2 Judgments

Now that you have some familiarity with evaluation rules, you may have room in your mind for
more terminology.

We started out (in the AE and WAE languages) by saying that “e ⇓ n” meant “e evaluates to the
number n”. After we moved on to the Fun language, we needed expressions to evaluate to either
numbers or lams, so we stopped using e ⇓ n and started using e ⇓ v instead.

Rules and derivation trees, however, are not limited to statements about what an expression eval-
uates to. Gentzen invented the tree notation to represent mathematical proofs, and its invention
substantially predates the development of programming language semantics. The statements
“e ⇓ n” and “e ⇓ v” are just particular kinds of judgments, and “e ⇓ n” and “e ⇓ v” are particular
judgment forms.

We actually introduced another judgment form without much fuss: “e free-variable-error”, used as
the conclusion of the rule Eval-free-identifier (which I’m going to rename FVerr-id). In Figure 1,
we move this rule away from the others, and add headings like this:

2 2015/10/10

§2 Judgments

judgment reading

Below this heading, we put all the rules whose conclusion has the stated judgment form.

The reading is both a “pronunciation key” (how to read aloud a judgment of this form), and a
suggestion for how to understand judgments of this form. The judgment form e free-variable-error
is rather self-explanatory, but here are some other judgment forms seen in the wild:

P true
Γ ` P valid
τ : κ
Γ ` e : τ
Γ ` e :ϕ A ↪→M

e −→ e ′

G1 `pω e ⇓ G2; t
We’ll learn what some of these mean later in 311. Defining a language via rules usually requires
several different judgment forms, both for the dynamic semantics and for the static semantics.

All of the terminology (rule, premise, conclusion, derivation tree, derivable), as well as tech-
niques for working with rules and derivations, such as the “method of hope”, is the same for
any judgment form, no matter what the purpose of the judgment is. We’ll see this in a little
while when we introduce small-step semantics as a different way of specifying the behaviour of
an interpreter, and later when we look at static semantics, particularly static typing.

3 Error rules for Fun

Ignoring errors, such as free identifiers, trying to add a function to a number, or trying to apply
a number to a function, our rules match the interpreter we wrote. However, the specification of
errors isn’t very satisfactory.

Let’s consider only the free identifier (or free variable) error, and whether our interpreter is sound
and complete given that rule.

Last time, we said:

Definition 1. Completeness of the interpreter: If e ⇓ v is derivable then (interp e) = v.

Definition 2. Soundness of the interpreter: If (interp e) = v then e ⇓ v is derivable.

These notions make sense for other judgments, such as the e free-variable-error judgment:

Definition 3. Completeness of the interpreter’s handling of free variable errors:
If e free-variable-error is derivable then (interp e) raises a free variable error.

3 2015/10/10

§3 Error rules for Fun

Completeness means that, whenever the rules for deriving e free-variable-error say that a free
variable error has occurred, our interpreter will flag such an error. By “raises” or “flags”, I mean
what the Racket (actually PLAI) error function does.

Definition 4. Soundness of the interpreter’s handling of free variable errors:
If (interp e) raises a free variable error then e free-variable-error.

Is our interpreter’s handling of free variable errors sound and complete?

If we evaluate (interp (id 'i)) our interpreter evaluates (error "free-variable"). This
seems to correspond to the one rule that can derive the e free-variable-error judgment form. Note
that interp’s type-case branch

[id (x)
(error "free-variable")]

doesn’t inspect x, so it will do the same thing for (interp (id 'zzzzz)) or any other symbol.

However, our interpreter is not sound, because our interpreter is doing a much better job of
catching free variables! For example:

(interp (add (num 5) (id 'i)))

gives a free variable error, which is what we want, but isn’t what the rules say! The rules say that
the only expression that should cause a free-variable-error is id. Not an expression that contains
an id, but exactly an id.

When we say our interpreter is not sound, we must understand that this does not necessarily
mean our interpreter is wrong! Soundness is always with respect to a definition. Here, it is our
definition that really needs to change, because our definition doesn’t match our expectation. We
expect that a free variable should cause an error even if it’s hiding inside an add.

How should we fix our definition? We have to add lots of new rules, like this:

e free-variable-error e raises a free variable error

(id x) free-variable-error
FVerr-id

e1 free-variable-error
(add e1 e2) free-variable-error

FVerr-add-left
e2 free-variable-error

(add e1 e2) free-variable-error
FVerr-add-right

e1 free-variable-error
(app e1 e2) free-variable-error

FVerr-app-left
e2 free-variable-error

(app e1 e2) free-variable-error
FVerr-app-right

We would need several more rules, which I won’t bore you with, but we have to know when
to stop. The following rule would not be helpful, even though it seems to follow the pattern
established above.

e free-variable-error
(lam x e) free-variable-error

FVerr-lam??

4 2015/10/10

§3 Error rules for Fun

Why? Well, we want to flag free identifiers, but x will be flagged as free even though the lam
binds it!

(id x) free-variable-error
FVerr-id

(lam x (id x)) free-variable-error
FVerr-lam??

Putting in this rule seems bad. Fortunately, we can leave it out without affecting soundness and
completeness. Our interpreter doesn’t catch free variable errors until it actually reaches them:

> (interp (lam 'a (id 'b)))
(lam 'a (id 'b))
> (interp (app (lam 'a (id 'b)) (num 0)))
⊗ free-variable

Whether this is what we really want is another question; for the sake of stability, to keep us from
changing both the interpreter and the rules at the same time, let’s just assume it is.

But something still doesn’t match up:

e2 free-variable-error
(add e1 e2) free-variable-error

FVerr-add-right

This rule is looking too hard: if e1 doesn’t evaluate to something—for example, when e1 is
(rec u (id u))—FVerr-add-right will raise an error, even though our interpreter wouldn’t.

e1 ⇓ v1 e2 free-variable-error
(add e1 e2) free-variable-error

FVerr-add-right-better

This should match our interpreter. But we also have to change FVerr-app-right, and other FVerr
rules we didn’t bother to write down. Now imagine doing this for other errors that our interpreter
catches, but that we haven’t written rules for. And then imagine doing this for an actual language
with many more features than Fun!

Our interpreter tries to evaluate the given expression e; this involves interpreting the expressions
inside e. But if it notices a free variable, it raises an error. Can we distill what it means to be
“about to notice a free variable”, and somehow use that in our rules? Yes, but to do this effectively
we need to use a different kind of semantics, small-step semantics, which will turn out to have
several advantages over evaluation semantics.

(Aside: My opposition to “interpreter semantics” doesn’t mean I’m against allowing a particular
interpreter that seems to do something sensible, like our interp function in dynsem-fun.rkt, to
guide our development of the rules. In the end, a definition should be independent of all of its
implementations, but to develop that definition, we should welcome insights from anywhere!)

4 Error rules for Fun, in painful detail

When is our interpreter about to notice a free variable? That is, when we do (interp e), when
will our interpreter raise an error?

5 2015/10/10

§4 Error rules for Fun, in painful detail

(1) when e is (id · · ·)

(2) when e is (add e1 e2) and we’re about to notice a free variable in e1

(3) when e is (add e1 e2), we evaluated e1 to some value, and we’re about to notice a free
variable in e2

(4) same as (2) and (3), but for sub

(5) when e is (app e1 e2) and we’re about to notice a free variable in e1

(6) when e is (app e1 e2) and e1 evaluates to (lam x eB) and we’re about to notice a free variable
in e2

(7) when e is (app e1 e2) and e1 evaluates to (lam x eB) and e2 evaluates to v2 and we’re about
to notice a free variable in subst(eB, x, v2)

(8) when e is (with x e1 eB) and we’re about to notice a free variable in e1

(9) when e is (with x e1 eB), we evaluated e1 to some value, and we’re about to notice a free
variable in eB

This attempted definition is essentially repeating all the evaluation rules, but with “about to
notice a free variable” replacing one premise. We have the evaluation rule

e1 ⇓ (lam x eB) e2 ⇓ v2 subst(eB, x, v2) ⇓ v
(app e1 e2) ⇓ v Eval-app-value

and we could write these rules corresponding to (5)–(7):

e1 free-variable-error
(app e1 e2) free-variable-error

FVerr-app-1
e1 ⇓ (lam x eB) e2 free-variable-error

(app e1 e2) free-variable-error
FVerr-app-2

e1 ⇓ (lam x eB) e2 ⇓ v2 subst(eB, x, v2) free-variable-error
(app e1 e2) free-variable-error

FVerr-app-3

This is “straightforward” but tedious. Eval-app-value covers the situation where “everything
works”, that is, when evaluating e1 gives a lam, when evaluating e2 gives a value, and when
evaluating the body under substitution gives a value. The FVerr-app- rules have to deal with
every possible point of failure: e1 can’t be evaluated (FVerr-app-1), e1 is fine but e2 can’t be
evaluated (FVerr-app-2), or e1 and e2 are fine but subst(eB, x, v2) can’t be evaluated.

Exercise 5. Write an FVerr rule for rec, and rules for with.

At this point (especially if you did the exercise), you might be thinking, “Curse Gentzen and his
‘rules’! I wish I could just raise an error and have it somehow propagate through the rules, like
I can use error in interp!” Sadly, that isn’t feasible. While 311 is skipping the mathematical
foundations underlying rules and derivations, those foundations exist and are essential to being
able to prove properties of rules, and I don’t see how the foundations would survive trying to add
exceptions to the rules mechanism itself.

Switching to a different semantics will help, though.

6 2015/10/10

§5 Small-step semantics

5 Small-step semantics

Forget about error handling for a moment:

When we use the method of hope to derive an evaluation judgment e ⇓ v, we see expressions
becoming “more evaluated”. Expressions are replaced with values; bound variables in lam and
with get replaced with values. (If we used the expression strategy instead of the value strategy,
the bound variables are replaced with expressions that aren’t necessarily values; still, at least
they’re known expressions.)

. . .

(add (num 1) (num 2)) ⇓ ___ (num 10) ⇓ ___(
sub (add (num 1) (num 2)) (num 10)

) ⇓ ___
Eval-sub(

app
(
lam x

(
sub (add (id x) (num 2)) (num 10)

)
(num 1)

)) ⇓ ___
Eval-app

Little steps of computation happen along the way, such as when we replace n1 and n2 in “n1+n2”
and add the actual numbers together.

. . .

(add (num 1) (num 2)) ⇓ (num 3) (num 10) ⇓ ___(
sub (add (num 1) (num 2)) (num 10)

) ⇓ ___
Eval-sub(

app
(
lam x

(
sub (add (id x) (num 2)) (num 10)

)
(num 1)

)) ⇓ ___
Eval-app

This suggests that instead of saying the meaning of an expression is what it evaluates to, we can
think of the meaning of an expression as the expression we get after doing “one step” of computation.
In this way, the meaning of

(
sub (add (num 1) (num 2)) (num 10)

)
is(

sub (num 3) (num 10)
)

and the meaning of that expression is
(num −7)

This might seem tedious (and risking Zeno’s paradox?) but we’ll be able to recover the same
notion of meaning we had with e ⇓ v (and we won’t need a cavalcade of error rules).

The new judgment form will be
e1 −→ e2

and is read “e1 steps to e2”.

The rules for this judgment form will feel different from the Eval rules we used before. Rather
than writing rules that recursively evaluate subexpressions, as in Eval-add which evaluates the
subexpressions e1 and e2 before doing its actual work (adding n1 and n2), most of our rules will
only work directly when their subexpressions are already values. Just one rule (backed by a BNF
definition) will manage “finding” a subexpression to step.

First, let’s write the “basic” rules, sometimes called reduction rules. Think of these rules as where
computation really happens. We show these in Figure 2.

The last rule in Figure 2 is not a reduction rule, and is quite concise but depends on another
definition, which we’ll explain next: evaluation contexts.

7 2015/10/10

§5 Small-step semantics

e1 −→ e2 Expression e1 steps to e2

Reduction rules:

(
add (num n1) (num n2)

)
−→ (num n1+n2)

Step-add

(
sub (num n1) (num n2)

)
−→ (num n1−n2)

Step-sub

(
app (lam x eB) v

)
−→ subst(eB, x, v)

Step-app-value

(with x v1 e2) −→ subst(e2, x, v1)
Step-with

(rec u e) −→ subst(e, u, (rec u e))
Step-rec

Context rule:

e −→ e ′

C
[
e
]
−→ C[e ′] Step-context

Figure 2 Small-step semantics

The idea is that if we are given an expression that contains a subexpression e, where e is “an
expression we should step next”, and we can use one of the basic rules (reduction rules) to step e
to e ′, then the whole expression steps to C

[
e ′
]
. The expression we get after stepping is the same

as the one we started with, except for the part e that just “took a step”.

To define what C means, we’ll use a BNF. We’ve been using BNFs to define the concrete syntax
of languages, but BNFs are versatile and can also be used with abstract syntax. To (hopefully)
clarify that this BNF is describing abstract syntax, not concrete syntax, I’ll follow the convention
I’ve been using in the rules, where we write e, v, n, etc. rather than using angle brackets 〈E〉 (as
PLAI and the Algol 60 Report do for concrete syntax).

This is also an opportunity to define values v using a BNF:

Values v ::= (num n)
| (lam x e)

Exercise 6. Update this definition of values v to reflect Fun++ (the Assignment 2 language).

Now, the definition of evaluation contexts:

8 2015/10/10

§5 Small-step semantics

Evaluation contexts C ::= []
| (add C e)
| (add v C)
| (sub C e)
| (sub v C)
| (app C e)
| (app v C)
| (with x C e)

The empty brackets [] are called a “hole”. Some examples of evaluation contexts:

(add [] (app e3 e4))
(sub (num 5) [])

(app (app [] e1) e2))

In all of these, the hole [] appears in a position where we should try to step:

• to add, we need two values (numbers), so we should try to step the first subexpression

• to sub, if we have a value (num 5) as the first subexpression we should try to step the second
subexpression

• to apply a function to an argument, where the function is itself a function application, we
need to step inside that application

We also need some more notation: we want to use these contexts in our rule Step-context, but a
context C isn’t an expression because it always has a hole [] in it, and holes aren’t in our abstract
syntax! (They’re also not in our concrete syntax, which is just as well.) So we’ll write

C
[
e
]

to mean the context C with its hole replaced by e. This is best understood through examples, so:

if C is. . . and e is. . . then C
[
e
]

is. . .

(add [] (app e3 e4)) (sub e1 e2) (add (sub e1 e2) (app e3 e4))
(add [] (app e3 e4)) (num 1) (add (num 1) (app e3 e4)) ∗(

sub (num 5) []
) (

app (lam x (id x)) (num 2)
) (

sub (num 5)
(
app (lam x (id x)) (num 2)

))(
app (app [] e1) e2)

)
(add (lam . . .) (lam . . .))

(
app (app (add (lam . . .) (lam . . .)) e1) e2)

)
∗∗

The second example (marked ∗) illustrates that contexts C don’t care whether the expression
replacing the hole can actually step: (num 1) is a value, so it won’t step to anything. We wouldn’t
be able to apply Step-context on this particular C

[
e
]
, but the definition of C doesn’t care. The last

example (marked ∗∗) also shows this: (add (lam . . .) (lam . . .)) won’t step, but it can still replace
the hole. The definition of C is all about finding a position within the expression; C doesn’t care
what’s at that position.

5.1 Error handling

Now for the thrilling conclusion: With a small-step semantics, the annoying error rules can be
replaced with just one:

9 2015/10/10

§5 Small-step semantics

C
[
(id x)

]
free-variable-error

FVerr-context

5.2 Relating small- and big-step semantics

You’ve seen small-step semantics now, so I can tell you that “evaluation semantics” is often called
“big-step semantics”: to evaluate (add e1 e2), evaluation semantics has e1 take a “big step” and
then has e2 take a “big step”.

Have we accidentally defined a different language? Hopefully not. First we need a useful defini-
tion:

Definition 7. We write e −→∗ e ′ to mean that e takes 0 or more steps to e ′. (That is, either
e = e ′, or e −→ e2 and e2 −→∗ e ′.)
If we’re really enjoying Gentzen’s notation, we can write this definition using rules:

e −→∗ e ′ Expression e takes 0 or more steps to e ′

e −→∗ e Steps-zero
e −→ e2 e2 −→ e ′

e −→∗ e ′ Steps-step

Exercise 8. Write rules deriving e −→+ e ′ such that e −→+ e ′ if and only if e takes one or
more steps to e ′. You can use other judgment forms, including −→∗, as premises.

Now the following should hold:

(1) If e ⇓ v then e −→∗ v.
(2) If e −→∗ v then e ⇓ v.
Proving these is outside the scope of 311, but they should hold unless I’ve made a mistake. . .

A consequence of (1) and (2) is that, ignoring the whole issue of error handling, we can write an
interpreter either by following the Eval rules or by following the Step rules. In the former case,
we can look at the interpreter code and (hopefully) see that it directly implements the Eval rules,
and then appeal to (1) and (2) to show that our interpreter (indirectly) follows the Step rules. In
the latter case, we have to write an interpreter (maybe we should call it a stepper?) that directly
implements the Step rules, and again appeal to (1) and (2), to show that we have (indirectly)
implemented the Eval rules.

Both small- and big-step semantics are used to define programming languages, but small-step
has some important advantages, (partly) explained below. (Big-step is usually considered easier
to understand, which is one of the reasons I presented it first.)

10 2015/10/10

§5 Small-step semantics

5.3 Small-step semantics and recursion

As with big-step semantics (e ⇓ v), attempting to step (rec u (id u)) won’t get us anywhere useful.
However, small-step “fails” less catastrophically. In big-step, we attempted to construct an infinite
derivation tree; in small-step, we can apply rule Step-rec to derive a perfectly good judgment:

(rec u (id u)) −→ (rec u (id u))
Step-rec

If we keep stepping, we won’t get anywhere. If we enjoy Gentzen’s notation and regard the
Steps-zero and Steps-step rules as the definition of “stepping 0 or more times”, we will again
attempt to construct an infinite derivation tree.

Being able to talk about taking one step is useful. For example, an information-flow type system
can prove that a given program will never leak secret information (e.g. by printing a cleartext
password). For a big-step semantics, this property cannot be stated easily: we can certainly
model what evaluation prints, through a judgment

e ⇓ v prints s

read “e evaluates to value v and prints the string s”. But we can’t prove the following statement:

For all e such that e passes the information-flow type system,
either e ⇓ v prints s where s contains no secret information,

or e free-variable-error.

We can’t prove this because evaluating e might diverge, for example, if e is (rec u (id u)). We
would instead have to prove the following (using “e ⇑” to mean e diverges):

For all e such that e passes the information-flow type system,
either e ⇓ v prints s where s contains no secret information,

or e free-variable-error,
or e ⇑ but e has not yet printed any secret information.

But what does “e has not yet printed any secret information” mean? The judgment e ⇓ v prints s
is supposed to define what expressions should print which strings, but it only makes sense if e
has finished and returned a value.

In small-step semantics, we still have a notion of diverging expressions: e diverges if there exists
no value v such that e −→∗ v. But we can easily talk about the steps we take as we go:

For all e such that e passes the information-flow type system,
either e is a value,

or e free-variable-error,
or e −→ e ′ prints s where s contains no secret information.

We could then show (by induction on the number of steps) that for any number of steps, no
secret information will be printed.

Another argument for small-step semantics is that, while we would like Fun(++) programs to
terminate and return a value, not all programs should terminate. An operating system kernel1 or

1I have an ancient Toshiba laptop that stayed up for over three years, running OpenBSD. I had to turn it off when I
moved back to Canada; the flights here were a little longer than its battery life.

11 2015/10/10

§5 Small-step semantics

web server should, in principle, run forever. We still want to know that the web server will never
send sensitive information in the clear (cf. Heartbleed), which is analogous to our information-
flow example above.

12 2015/10/10

	
	
	
	
	
	Error handling
	Relating small- and big-step semantics
	Small-step semantics and recursion

