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1 Topics discussed

• Recipe for extending a language

• The “Fun language”: concrete syntax, abstract syntax

• The Fun language: evaluation rules

– why evaluation in Fun produces a value, not just a number

– evaluation rule for lam

– updated evaluation rules for features already in WAE

– rule for function application?

(the lecture on Monday, 2015/09/21 ended around this point)

• rule for function application: Eval-app-expr

• the “expression strategy”

• example with Eval-app-expr

• the “method of hope”; complete derivations

• another example with Eval-app-expr

• the “value strategy” and Eval-app-value

• advantages and disadvantages of each strategy

(the lecture on Wednesday, 2015/09/23 ended here)

2 Functions

We started our journey through evaluation semantics with the AE language. We got a slightly larger
language, WAE, by adding the with construct, which lets us give names to values and then use those
names. To model with in the evaluation semantics, we had to define substitution.

Adding just one more feature will turn WAE into a surprisingly powerful language.
To add functions, we’ll try to follow the same recipe as for with:

1. Extend the concrete syntax (EBNF grammar).

2. Extend the abstract syntax (define-type).

3. Add evaluation rules.
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§3 The Fun language: syntax

After finishing these steps, we will have extended our language: a language is defined by its syntax
and semantics. To implement the language, we’ll need to extend our parsing function (to reflect the
new syntax) and our interpreter (to reflect the new evaluation rules).

Attention! From this point on, and until further notice, any similarity to the PLAI book will be
coincidental. Hold on tight!

Remark. In real life, or at least in real programming languages research, there would probably be
a fourth step: Prove that the new evaluation rules have good properties. Exactly what properties
are “good” depends on the language. For the AE and WAE languages, one good property (the only
one I can think of right now) would be determinism, which says that evaluating the same expression
should give consistent results:

“If e ⇓ n1 and e ⇓ n2, then n1 = n2.”

Later in 311, we’ll discuss these sorts of properties (without actually proving them).

3 The Fun language: syntax

It’s time to add functions to the WAE language. Nearly a century of tradition would have us use the
syntax “lambda” or λ, but to help distinguish the lambda in Fun from the lambda in Racket (which
can also be written λ), we’ll use “lam”.

Instances of the identifier bound by lam can be represented by id, just as we did for with.

〈E〉 ::= 〈num〉
| {+ 〈E〉 〈E〉}
| {− 〈E〉 〈E〉}
| {with {〈id〉 〈E〉} 〈E〉}
| 〈id〉
| {lam 〈id〉 〈E〉}

And here’s the abstract syntax:

(define-type E

[num (n number?)]

[add (lhs E?) (rhs E?)]

[sub (lhs E?) (rhs E?)]

[with (name symbol?) (named-expr E?) (body E?)]

[id (name symbol?)]

[lam (name symbol?) (body E?)]

)

We’re not done with the syntax, though. In a previous lecture, I mentioned that a language can be
organized by what kinds of data it has, and how it “introduces” and “eliminates” each kind of data.
The AE and WAE languages only had one kind of data, numbers; functions are a new kind of data.
We can introduce functions with “lam”, but we need a way to use them. We’ll call this “app”. The
first expression will represent the function being applied, and the second expression will represent
the argument—what the function is being applied to.

〈E〉 ::= 〈num〉
| {+ 〈E〉 〈E〉}
| {− 〈E〉 〈E〉}
| {with {〈id〉 〈E〉} 〈E〉}
| 〈id〉
| {lam 〈id〉 〈E〉}
| {app 〈E〉 〈E〉}
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§4 The Fun language: Evaluation rules

Here’s the abstract syntax with both functions lam and function application app:

(define-type E

[num (n number?)]

[add (lhs E?) (rhs E?)]

[sub (lhs E?) (rhs E?)]

[with (name symbol?) (named-expr E?) (body E?)]

[id (name symbol?)]

[lam (name symbol?) (body E?)]

[app (function E?) (argument E?)]

)

4 The Fun language: Evaluation rules

We’ll try to reuse all the rules from the WAE language. Because we don’t know yet whether that will
work, we’ll write a ? before each rule name to emphasize its provisional status.

When we write a meta-variable e in a rule, it will stand for a Fun expression rather than a WAE
expression.

(num n) ⇓ n ?Eval-num
e1 ⇓ n1 e2 ⇓ n2

(add e1 e2) ⇓ n1 + n2

?Eval-add
e1 ⇓ n1 e2 ⇓ n2

(sub e1 e2) ⇓ n1 − n2

?Eval-sub

e1 ⇓ v1 subst(e2, x, (num v1)) ⇓ v2
(with x e1 e2) ⇓ v2 ?Eval-with

(id x) free-variable-error
?Eval-free-identifier

We added two productions to the EBNF and two variants to the abstract syntax, so we expect to need
two new evaluation rules. We might also expect (following the pattern of Eval-add, Eval-sub, and
Eval-with) that, since a lam has one expression inside it and an app has two expressions inside it, the
rule for Eval-lam will have one premise and the rule for Eval-app will have two premises:

??

(lam x e1) ⇓ ??
??Eval-lam

?? ??

(app e1 e2) ⇓ ??
??Eval-app

Let’s think about ??Eval-lam. What should its premise be? The only expression we have is e1, so
maybe we should evaluate e1 in the premise.

e1 ⇓ v1
(lam x e1) ⇓ v1?? ??Eval-lam

This seems to follow the pattern of our other rules, but (as with programming) we should think
about examples (test cases). What is the simplest possible function? I claim it is the identity function,
(lam x (id x)). So let’s try that function with our proposed rule:

(id x) ⇓
(lam x (id x)) ⇓

Now we have a problem: the expression (id x) doesn’t evaluate to anything—instead, we get a “free-
variable-error”. So we can’t derive (id x) ⇓ .

The problem is that we’re trying to evaluate what’s inside the function before we’ve applied it
to anything! We don’t know what x is until we pass the function an argument. A function is a
machine that turns arguments into results; evaluating a function without an argument is like running
a dishwasher when it’s empty.
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§4 The Fun language: Evaluation rules

We already have numbers that evaluate to themselves (Eval-num), so we’ll make functions evalu-
ate to themselves as well.

(lam x e1) ⇓ (lam x e1)
Eval-lam

Irritatingly, this doesn’t quite match what we’ve done so far. Instead of always evaluating to numbers—
deriving

. . . ⇓ n
where n is a number, we can now use Eval-lam to derive

. . . ⇓ (lam x e1)

We could say that evaluation produces either a number n or an expression of the form (lam x e1).
It will be a little easier to say that evaluation produces a value, where a value is a particular kind of
expression: one that is either (num n), or (lam x e1).1

Making this change requires several changes to the rules from the WAE language:

(num n) ⇓ (num n)
Eval-num

e1 ⇓ (num n1) e2 ⇓ (num n2)

(add e1 e2) ⇓ (num (n1 + n2))
Eval-add

e1 ⇓ (num n1) e2 ⇓ (num n2)

(sub e1 e2) ⇓ (num (n1 − n2))
Eval-sub

e1 ⇓ v1 subst(e2, x, (/////num v1)) ⇓ v2
(with x e1 e2) ⇓ v2 Eval-with

(id x) free-variable-error
Eval-free-identifier

(lam x e1) ⇓ (lam x e1)
Eval-lam

Interestingly, one of the rules—Eval-with—became simpler, and more general: it should now work
with any kind of value v1, not just numbers.

Figure 1 summarizes all our rules so far—we’re still missing a rule for app.

(num n) ⇓ (num n)
Eval-num

e1 ⇓ (num n1) e2 ⇓ (num n2)

(add e1 e2) ⇓ (num (n1 + n2))
Eval-add

e1 ⇓ (num n1) e2 ⇓ (num n2)

(sub e1 e2) ⇓ (num (n1 − n2))
Eval-sub

e1 ⇓ v1 subst(e2, x, v1) ⇓ v2
(with x e1 e2) ⇓ v2 Eval-with

(id x) free-variable-error
Eval-free-identifier

(lam x e1) ⇓ (lam x e1)
Eval-lam

Figure 1 Evaluation rules for Fun (still missing a rule for app)

4.1 Evaluating application

Here’s our guess at the shape of the Eval-app rule, with a lot of ??’s.

?? ??

(app e1 e2) ⇓ ??
??Eval-app

1By themselves, values are inert. They don’t do anything. A function does nothing until it’s called. Unfortunately, many
“real” programming languages make this hard to remember. For example, DrRacket claims that the result of evaluating
(lambda (x) x) is “#<procedure>”. But you should think of that as just a strange notation for the function you entered.
It’s still (lambda (x) x).
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§4 The Fun language: Evaluation rules

Ideas?
At this point, I was expecting to (eventually) reach a particular rule, but it’s not the one that you

suggested during lecture. (I should have expected this, since I suggested that we have a rule with two
premises, and the one I was thinking of has three premises!) However, the rule you suggested is quite
reasonable.

The first suggestion was to evaluate e1 to a lam. Why does it have to be a lam? Well, evaluation
produces a value. We have two kinds of values so far: numbers and lams. Applying a number as a
function doesn’t make much sense, so it’s got to be a lam. Also, requiring e1 to evaluate to a lam

corresponds to Eval-add, where the expressions being added have to evaluate to nums.

e1 ⇓ (lam x eB) ??

(app e1 e2) ⇓ ??
?Eval-app

I can’t think of any other way of writing this first premise. This is good progress, so I dropped one of
the ?’s from the name of the rule.

Now we come to a “fork in the road”. The choice we make now will decide what evaluation
strategy this language has. This is usually considered an important and fundamental language design
choice, especially for functional languages (like Racket and this Fun language).

4.1.1 The “expression strategy”

The next suggestion during lecture was to substitute e2 for x, like this:2

e1 ⇓ (lam x eB) subst(eB, x, e2) ⇓ v
(app e1 e2) ⇓ v Eval-app-expr

We’ll call this the expression strategy3, because we’re taking the expression e2—the argument being
passed to (lam x eB)—and substituting it for x, without evaluating e2.

Let’s look at some examples.

• Evaluating an application of the identity function.

Suppose we apply the identity function (lam x (id x)) to some simple expression,
like (add (num 2) (num 3)).

(It would be even simpler to apply the identity function to a num, but that wouldn’t illustrate
what I’m trying to illustrate.)

So we need to derive (
app (lam x (id x)) (add (num 2) (num 3)

) ⇓ · · ·
First we “match” expressions to meta-variables in Eval-app-expr:(

app (lam x (id x))︸ ︷︷ ︸
e1

(add (num 2) (num 3)︸ ︷︷ ︸
e2

) ⇓ · · ·
Then we plug in those expressions:

(lam x (id x)) ⇓ (lam x eB) subst(eB, x, (add (num 2) (num 3))) ⇓ v(
app (lam x (id x)) (add (num 2) (num 3)

) ⇓ v Eval-app-expr

We need to be careful about Gentzen’s notation. We want to apply the rule Eval-app-expr, but we
haven’t really applied it yet, because we haven’t derived its two premises. A rule is an “if. . . then

2During lecture, I called the result of evaluation v2 rather than v. It will be less confusing to call it v.
3There is a more traditional name, which we’ll talk about in due course.

5 2015/9/23



§4 The Fun language: Evaluation rules

. . . ” statement; you don’t get to conclude the “then” part without showing that the “if” holds.
What I wrote above is based on the power of hope: I want to derive

(
app · · · · · ·

) ⇓ v, so I’m
going to try to apply Eval-app-expr. To apply Eval-app-expr, I need to derive each premise, using
the same method of hope.

At each step in this process, any leaf in my derivation tree that doesn’t have a horizontal line
over it is a goal that remains to be proved.4

If I can get a derivation tree whose leaves all have horizontal lines over them, I will know that I
have derived

(
app · · · · · ·

) ⇓ v, but not before.

We now want to derive

(lam x (id x)) ⇓ (lam x eB) (first goal)

and
subst(eB, x, (add (num 2) (num 3))) ⇓ v (second goal)

For the first evaluation, we have a rule that evaluates lams: Eval-lam. Plugging in for the
meta-variable e1 in that rule, we get

(lam x (id x)) ⇓ (lam x (id x)︸ ︷︷ ︸
eB

)

Note that this tells us what eB is, so we can revise our second goal by plugging in (id x) for eB:

subst((id x) , x, (add (num 2) (num 3))) ⇓ v (second goal, revised)

Since subst is now applied to “real” arguments (without unknown meta-variables), we can use
the definition of subst. We really should revise the definition of subst to our extended language,
but the old version works for this example: replacing all instances of the identifier x in (id x)
with (add (num 2) (num 3)) is just (add (num 2) (num 3)).

(add (num 2) (num 3)) ⇓ v (second goal, revised again)

Exercise 1. Derive this second goal, following the “method of hope” as above. (This is not
exactly like a similar example for the AE language, because we changed our notion of evaluation
to produce expressions—more specifically, values—rather than numbers.) I left some space
above for you to write the derivation tree.

I’ll assume you’ve derived the second goal, and to keep track, I’ll put a checkmark X above it.
I’m also assuming you got (num 5), so I’m plugging that in for the meta-variable v.

(lam x (id x)) ⇓ (lam x (id x))
Eval-lam X

(add (num 2) (num 3)) ⇓ (num 5)(
app (lam x (id x)) (add (num 2) (num 3))

) ⇓ (num 5)
Eval-app-expr

Everything in this tree has either a horizontal line or a checkmark, so we have a complete
evaluation derivation.

4If you have used a logic programming language, such as Prolog (taught in CPSC 312), yes, there is a connection; we may
not have time to explore it in 311, though.
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§4 The Fun language: Evaluation rules

Remember: Following the method of hope, a derivation tree is complete if each leaf of the
tree is either (1) an application of a rule with no premises (for example, Eval-num), or (2) a
conclusion of some other complete derivation tree.

You can tell (1) because the leaf has a horizontal line with nothing above it.

To keep track of (2), write a checkmark above the leaf.

If a leaf doesn’t have a horizontal line or a checkmark, that leaf is a goal that needs to be be
derived, and the derivation is incomplete.

• Evaluating an application of the doubling function.

In Fun, we can write a function that doubles its argument:(
lam x (add (id x) (id x))

)
What happens when we apply this function to (add (num 2) (num 3))? Hopefully, we will get 10,
since 2 · (2 + 3) = 10. But remember that we are evaluating to expressions now, so we actually
want to evaluate to (num 10).

. . . ⇓ (
lam x (add (id x) (id x))

)Eval-lam
subst((add (id x) (id x)), x, (add (num 2) (num 3))) ⇓ v(

app
(
lam x (add (id x) (id x))

) (
add (num 2) (num 3)

)) ⇓ v Eval-app-expr

To save space, I wrote “. . . ”, but since Eval-lam has the same thing on both sides of the “⇓”, it
has to be

(
lam x (add (id x) (id x))

)
.

The second premise of Eval-app-expr has neither a horizontal line above nor a checkmark, so we
have an incomplete derivation. To figure out which rule to try, we need to know what expression
we have, so we look up the definition of subst. That gives:

. . . ⇓ (
lam x (add (id x) (id x))

)Eval-lam (
add (add (num 2) (num 3)) (add (num 2) (num 3))

) ⇓ v(
app

(
lam x (add (id x) (id x))

) (
add (num 2) (num 3)

)) ⇓ v Eval-app-expr

We now know exactly what expression we have, so we can try to apply a rule. We have an add,
so we’ll try Eval-add.

. . . ⇓ (
lam x (add (id x) (id x))

)Eval-lam
(add (num 2) (num 3)) ⇓ (num ) (add (num 2) (num 3)) ⇓ (num )(

add (add (num 2) (num 3)) (add (num 2) (num 3))
) ⇓ (num + )

Eval-add(
app

(
lam x (add (id x) (id x))

) (
add (num 2) (num 3)

)) ⇓ (num + )
Eval-app-expr

Conveniently, you already did a complete derivation for (add (num 2) (num 3)) and found that
this expression evaluated to (num 5), so we can fill in all of the blanks with 5.

. . . ⇓ (
lam x (add (id x) (id x))

)Eval-lam

X
(add (num 2) (num 3)) ⇓ (num 5)

X
(add (num 2) (num 3)) ⇓ (num 5)(

add (add (num 2) (num 3)) (add (num 2) (num 3))
) ⇓ (num 5+5)

Eval-add(
app

(
lam x (add (id x) (id x))

) (
add (num 2) (num 3)

)) ⇓ (num 5+5)
Eval-app-expr

Finally, we replace 5+ 5 with 10 in the derivation tree.

. . . ⇓ (
lam x (add (id x) (id x))

)Eval-lam

X
(add (num 2) (num 3)) ⇓ (num 5)

X
(add (num 2) (num 3)) ⇓ (num 5)(

add (add (num 2) (num 3)) (add (num 2) (num 3))
) ⇓ (num 10)

Eval-add(
app

(
lam x (add (id x) (id x))

) (
add (num 2) (num 3)

)) ⇓ (num 10)
Eval-app-expr
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§4 The Fun language: Evaluation rules

Notice that in last example, we ended up with two copies of the same evaluation derivation (the
one you did as an exercise). This is because we had two instances of x in the body of the function
being applied, and our rule Eval-app-expr substitutes the entire expression

(
add (num 2) (num 3)

)
.

Does that really matter, except for making the derivation tree bigger? Well, maybe. If the evalua-
tion semantics seems to be doing work twice, an interpreter based on the semantics will also do that
work twice! That doesn’t matter much for this small example, but imagine if, instead of the argument
being

(
add (num 2) (num 3)

)
, it were some expression that computed the sum of the first million prime

numbers. Our interpreter would evaluate that huge expression twice, even though it only appears
once in the input expression

(
app · · · · · ·

)
.

4.2 The “value strategy”

An alternative strategy, which we’ll call the value strategy, is to have this rule instead of Eval-app-expr:

e1 ⇓ (lam x eB) e2 ⇓ v2 subst(eB, x, v2) ⇓ v
(app e1 e2) ⇓ v Eval-app-value

The first premise is the same as Eval-app-expr, but a new second premise evaluates e2 immediately,
and in a third premise, we substitute the result of that evaluation for x.

We can see the difference from Eval-app-expr by evaluating the same Fun expression we evaluated
just above, the doubling function applied to (add (num 2) (num 3)). The expression still evaluates to
(num 10), but the derivation looks rather different:

. . . ⇓ (
lam x (add (id x) (id x))

)Eval-lam X
(add (num 2) (num 3)) ⇓ v2︷ ︸︸ ︷

(num 5)
(
add (num 5) (num 5)

) ⇓ (num 10)(
app

(
lam x (add (id x) (id x))

) (
add (num 2) (num 3)

)) ⇓ (num 10)
Eval-app-value

4.3 Advantages and disadvantages

Think about the “expression strategy” and the “value strategy”. The value strategy gave us a smaller
derivation for one of our examples—and would also give us a faster interpreter for that example.

• Both strategies seem to be giving us the same answers—evaluation is giving us the same values.
Is that true in general?

– There are different ways to read “in general”. For our language5, we will indeed get the
same value regardless of which strategy we use, for any expression. (Caveat: I haven’t
proved this.) The size of the derivations, and the amount of time the interpreter will take,
may be very different, but we’ll get the same value (either a num or a lam).

– If we mean languages generally, there are languages where this doesn’t hold. In a lan-
guage with effects, the argument e2 might do something that allows us to distinguish the
two evaluation strategies. For example, e2 might print a string, and a different number
of strings would be printed depending on the evaluation strategy. The values returned
wouldn’t change, however: either you print once, and return a value, or you print twice
and return the same value.
We could get different values, however, if our language had mutable state, such as an
incrementable counter. If e2 increments this counter, the contents of the counter might
affect the value returned.
Languages with mutable state have more complicated semantics, which we’ll look at later
on.

5Or rather, our languages: a language is syntax and semantics together, so we should really talk about two languages: the
“Fun with Eval-app-expr” language, and the “Fun with Eval-app-value” language.
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§4 The Fun language: Evaluation rules

• Are there any Fun expressions where the expression strategy (Eval-app-expr) would be faster?

– Yes—expressions that apply a function that doesn’t use its argument:

(lam x (num 4)) ⇓ (lam x (num 4))
Eval-lam

subst((num 4), x,
(
add (num 2) (num 3)

)
) ⇓ v

(app (lam x (num 4))
(
add (num 2) (num 3)

)) ⇓ v Eval-app-expr

Since x doesn’t occur in (num 4), the result of subst on (num 4) is just (num 4):

(lam x (num 4)) ⇓ (lam x (num 4))
Eval-lam

(num 4) ⇓ v
(app (lam x (num 4))

(
add (num 2) (num 3)

)︸ ︷︷ ︸
e2

) ⇓ v Eval-app-expr

Here, we never evaluate the argument e2 at all! The value strategy would evaluate e2 even
though it’s not needed.

– There’s another evaluation strategy, lazy evaluation, which doesn’t evaluate the argument
e2 until it’s used inside the lam. At that time, it evaluates e2 and remembers the value it
gets. Other instances of x will reuse that value instead of evaluating e2 again. This strategy
is a little more complicated to define, but we’ll come back to it later in 311.

• Does evaluation in Racket work like the expression strategy, or like the value strategy? How
about Java? Haskell? Algol-60?

– What Racket does isn’t exactly the same as either of our evaluation rules, but it’s very close
to the value strategy.

– Java: same answer. (In Java, and similar languages, you often pass pointers or references
around, but those are really just values, albeit of a different kind than the values in Fun.)

– Haskell uses lazy evaluation (see above), so it’s kind of like the expression strategy.

– Algol-60 supports both the value strategy and the expression strategy. The expression strat-
egy is the default, but programmers can designate specific function arguments as following
the value strategy. (The Algol-60 committee had just invented the expression strategy. Years
later, several committee members were still angry that the report’s editor, Peter Naur—also
the ‘N’ in ‘BNF’—decided, on his own, to make the expression strategy be the default.)
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