
CPSC 311: Definition of Programming Languages:

Specifying dynamic semantics

(“04-operational”)

Joshua Dunfield
University of British Columbia

(portions based on notes by Brigitte Pientka, McGill University)

September 19, 2015

What do programs mean? They mean whatever the1 language definition says they do. So the real
question is: How do we specify, in a language definition, the meaning of the language’s programs?

1 Why dynamic semantics?

Unlike syntax, where practically all language designers2 uses some variation of BNF grammars, specifying
which syntactically well-formed programs actually mean something, and what they mean, is less settled.

Various methods have been used, with names like “axiomatic semantics”, “operational semantics”, “natu-
ral semantics”, and “denotational semantics”. Within the programming languages research community, there
is lively competition amongst these methods. To most of the world, though, this competition is off the radar:
most languages’ semantics are specified informally. (Standard ML is probably the most popular formally
defined language—and Standard ML is even less “mainstream” than Scheme/Racket.)

In 311, we will focus on one method, operational semantics. Given a specification in operational seman-
tics, it is relatively easy (compared to specifications using other methods) to write an interpreter. Operational
semantics has a rich mathematical foundation, which you would want to understand to do research in pro-
gramming languages, but you don’t need to understand that foundation to turn operational semantics into
interpreters. In lecture, I turned my mathematical definition of subst into a Racket function, without worry-
ing about whether my definition had good mathematical properties.

The idea of trying to specify the meaning of a mathematical object (a program) through natural language
alone, rather than more “formally” (through logic and mathematics), calls to mind a quotation:

“About the use of language: it is impossible to sharpen a pencil with a blunt axe. It is equally
vain to try to do it with ten blunt axes instead.” —Edsger Dijkstra

Formal mathematical language is not an absolute guarantee against mistakes or oversights in defining the
semantics (a serious mistake in SML’s formal definition went unnoticed for years), but it, at least, gives us a
point of reference. Rules in natural language are for people, not computers; understanding a programming
language shouldn’t require one to be a “language lawyer”.

2 Evaluation semantics

As I mentioned, operational semantics is closer to an interpreter than other methods for specifying what a
program does. There are different flavours of operational semantics; we’ll start with the one that’s usually
easier to understand, called evaluation semantics.

(That is, evaluation semantics is one kind of operational semantics, which is one method for specifying
dynamic semantics. But for now, just remember: what we’re going to do, right now, is called evaluation
semantics.)

1We’ll assume that we know which language the program is written in, despite programs such as
http://ideology.com.au/polyglot/polyglot.txt.

2One exception: the designers of Algol 68, who tried to innovate in this area; it didn’t end well.

1 2015/9/19

http://ideology.com.au/polyglot/polyglot.txt


§2 Evaluation semantics

The idea of evaluation semantics is that the dynamic behaviour—the dynamic “meaning” of a program—
is the value it computes, or equivalently, what it evaluates to. We expect that {+ 2 2} will compute 4, or
equivalently, will evaluate to 4.

For our very first example of evaluation semantics, we’ll follow the language “AE” from Chapter 2 of
PLAI. Its concrete syntax, or EBNF—as given on p. 7 of PLAI—is

〈AE〉 ::= 〈num〉
| {+ 〈AE〉 〈AE〉}
| {− 〈AE〉 〈AE〉}

Also, recall its abstract syntax (PLAI, p. 6):

(define-type AE
[num (n number?)]

[add (lhs AE?) (rhs AE?)]

[sub (lhs AE?) (rhs AE?)])

However, we’ll use the concrete syntax to write the evaluation semantics. This allows programmers to use
our semantics to understand the language, provided they can read evaluation semantics rules. The only
people who should have to know what the abstract syntax looks like are the people writing the interpreter
(or reading the interpreter’s source code in the textbook).

Now, let’s write down a specification of the dynamic behaviour of this language, using the method of
evaluation semantics. First, we should ask: what is our goal? How will we know when we have a complete
(not necessarily good, but complete) specification? One answer (which is not always a good answer, but will
work just fine for this language) is: if we can specify the meaning of all expressions that are syntactically
well-formed (according to the EBNF for 〈AE〉), then we have a complete specification.

Thus, we need to specify the meaning of each of the three syntactic cases (〈num〉, + and −) in the EBNF.
Since we’re going to use evaluation semantics, we need to specify what a 〈num〉 evaluates to, what a +

evaluates to, and what a − evaluates to.
This language is so tiny, and there’s only one reasonable way it can work: + should add, and − should

subtract. So we can focus on how to write down an evaluation semantics, rather than spend time wondering
if we’re making good design decisions.

We want to be really precise, so let’s try to be a little more precise than just saying “+ should add, and
− should subtract”. Just as CPSC 110 shows how to follow a data definition (for example, if you need to
write a function that takes a BST (binary search tree), you need to write a case for ‘false’ and a case for
‘(make-node . . . )’), let’s try to follow the BNF:

• we need to say what a number evaluates to,

• we need to say what a + evaluates to, and

• we need to say what a − evaluates to.

This is a little vague, though, because we didn’t mention the subexpressions of + and −. Let’s fix that, and
also (in the first case) mention the specific number!

• we need to say what a number n evaluates to,

• we need to say what {+ AE1 AE2} evaluates to, and

• we need to say what {− AE1 AE2} evaluates to.

Here, AE1 stands for the first subexpression, and AE2 stands for the second subexpression.
Now let’s actually say (in English) what these things evaluate to. A number shouldn’t do anything, so

we’ll say that it evaluates to itself:

2 2015/9/19



§2 Evaluation semantics

• A number n evaluates to n.

What should {+ AE1 AE2} evaluate to? Well, that depends on what AE1 and AE2 are. Or rather, what
they evaluate to. So let’s start there.

• If AE1 evaluates to n1, and AE2 evaluates to n2, then {+ AE1 AE2} evaluates to . . .

We want + to add, so it needs to add n1 to n2.

• If AE1 evaluates to n1, and AE2 evaluates to n2, then {+ AE1 AE2} evaluates to n1 + n2.

Now we can give meaning to − in the same way, resulting in something reasonably precise (it’s still in
English):

• A number n evaluates to n.

• If AE1 evaluates to n1, and AE2 evaluates to n2, then {+ AE1 AE2} evaluates to n1 + n2.

• If AE1 evaluates to n1, and AE2 evaluates to n2, then {− AE1 AE2} evaluates to n1 − n2.

2.1 Rules

We’re now very close to an evaluation semantics! In fact, all we have to do is rewrite the above using some
funny notation: Instead of “AE evaluates to n”, we’ll write “AE ⇓ n”. And instead of “If. . . then . . . ”, we’ll
use a horizontal line, like this:

AE1 ⇓ n1 AE2 ⇓ n2

{− AE1 AE2} ⇓ n1 − n2

Eval-sub

This notation was invented by the logician Gerhard Gentzen.
An inference rule, or rule for short, looks like

premise
1

. . . premise
m

conclusion
rule name

The part below the line is called the conclusion, and the parts above the line are called the premises. To
the right of the line, we often write the name of the rule. We can read a rule as follows: To derive the
conclusion, we must satisfy each of the premises. In other words, if the premises are satisfied, we have
shown the conclusion. Or, very briefly, “if premises, then conclusion”.

Rules always have a conclusion, but they don’t have to have premises. In fact, to write down the rule for
our first case (“A number n evaluates to n”), we don’t need any premises:

n ⇓ n
Eval-num

Often, the rule for a syntactic form will have exactly one premise for each smaller expression it contains. A
number doesn’t contain any subexpressions, so the evaluation rule for numbers doesn’t have any premises.
On the other hand, {− AE1 AE2} has two subexpressions so its rule has two premises.

What can you do with a rule? You can apply it, by filling in its “meta-variables”. Here, our “meta-
variables” are n (in Eval-num), and AE1, AE2, n1, and n2 in Eval-add and Eval-sub. A meta-variable is a
placeholder: we can fill in AE1 and AE2 with 〈AE〉’s, and we can fill in n, n1 and n2 with numbers.

This is easier to see with an example. Given the rule

n ⇓ n
Eval-num

3 2015/9/19



§3 From the rules to an interpreter

we can apply it by plugging in an actual number for the meta-variable n:

7 ⇓ 7

Once we’ve applied Eval-num, we have an evaluation derivation of 7 ⇓ 7, and say that we have derived 7 ⇓ 7.
Note that, unlike our EBNF grammar—where we wrote 〈AE〉 twice in the production for + to refer to

(possibly) different expressions—writing n twice in the rule Eval-num means that we have to substitute the
same number.

We can similarly derive 6 ⇓ 6:

6 ⇓ 6

This gives us two derivations, one of 7 ⇓ 7 and one of 6 ⇓ 6, so we have enough derivations to apply Eval-sub:

7 ⇓ 7 6 ⇓ 6

{− 7 6} ⇓ 1

We got this by looking at the rule Eval-sub, plugging in 7 for AE1, plugging in 6 for AE2, plugging in 7 for
n1, and 6 for n2. The conclusion of Eval-sub says “. . . ⇓ n1−n2”, which—after plugging in for n1 and n2—is
. . . ⇓ 7− 6, which is . . . ⇓ 1.

Notice that this derivation of {− 7 6} ⇓ 1 looks like a tree (oriented the natural way, with the root at
the bottom, rather than the usual computer science way). And in fact, derivations are also called derivation
trees. This is a nice feature of Gentzen’s notation: derivations “fit together” visually.

Here’s a slightly larger example:

20 ⇓ 20 2 ⇓ 2

{+ 20 2} ⇓ 22

7 ⇓ 7 6 ⇓ 6

{− 7 6} ⇓ 1

{− {+ 20 2} {− 7 6}} ⇓ 21

It’s often useful to write the names of the rules being applied (later languages will have more than just three
rules!):

20 ⇓ 20
Eval-num

2 ⇓ 2
Eval-num

{+ 20 2} ⇓ 22
Eval-add

7 ⇓ 7
Eval-num

6 ⇓ 6
Eval-num

{− 7 6} ⇓ 1
Eval-sub

{− {+ 20 2} {− 7 6}} ⇓ 21
Eval-sub

2.2 Evaluation rules for AEs

In PL research papers, it’s customary to collect all the evaluation rules together, and throw one giant figure
at the reader. Fortunately, we only have three rules.

n ⇓ n
Eval-num

AE1 ⇓ n1 AE2 ⇓ n2

{+ AE1 AE2} ⇓ n1 + n2

Eval-add
AE1 ⇓ n1 AE2 ⇓ n2

{− AE1 AE2} ⇓ n1 − n2

Eval-sub

3 From the rules to an interpreter

Now we’ll write an interpreter that follows our evaluation rules. This interpreter will turn out to do the same
thing as PLAI’s interpreter in Chapter 2. The difference is how we got there. Once you understand how to

4 2015/9/19



§4 The WAE language

write interpreters based on evaluation rules, you can take evaluation rules you’ve never seen before—and
that may define a language with features you’ve never heard of—and write an interpreter that follows those
rules.

You won’t get that skill instantly just from this one tiny language, but you have to start somewhere!

3.1 Restating the rules in abstract syntax

It’s easier to work with abstract syntax—the “AE” defined with define-type—than concrete syntax, so our
interpreter will accept programs in abstract syntax. You can learn to mentally translate between concrete
and abstract syntax, but for now, let’s explicitly translate the rules to abstract syntax. We just have to change
all the AEs, inserting the constructors num, add and sub.

(I’m also going to write AE1 and AE2 in lowercase. I apologize for the extra confusion now; it will save
us some annoyance later.)

(num n) ⇓ n
Eval-num

ae1 ⇓ n1 ae2 ⇓ n2

(add ae1 ae2) ⇓ n1 + n2

Eval-add
ae1 ⇓ n1 ae2 ⇓ n2

(sub ae1 ae2) ⇓ n1 − n2

Eval-sub

This shows something interesting, though: the animals on each side of the “evaluates to” arrow (⇓) are not
the same kind of animal.3 In Eval-num, we have an AE, (num n), on the left of ⇓, but a plain number n

on the right. In the concrete syntax, we didn’t write num explicitly, so we couldn’t see this difference. We
could have chosen, instead, to “evaluate cats to cats” and produce an AE on the right, but it’s a little more
convenient to produce a number. (Later in 311, we’ll define other flavours of operational semantics that
don’t work this way.)

The job of writing an interpreter for AEs boils down to writing a function that answers this question:

“Given an ae, find a number n such that ae ⇓ n.”

During lecture, we wrote the following function:

(define (interp ae)

(type-case AE ae

[num (n) n]

[add (ae1 ae2)

(let ([n1 (interp ae1)]

[n2 (interp ae2)])

(+ n1 n2))]

[sub (ae1 ae2)

(let ([n1 (interp ae1)]

[n2 (interp ae2)])

(- n1 n2))]

))

Our interp function behaves the same as the calc function in PLAI, but our function has more let-
bindings. This is more verbose, but strengthens the connection between our interpreter and the rules. For
example, the expression (+ n1 n2) is a direct Racket translation (parentheses and a prefix operator +) of
the n1 + n2 that appears in the conclusion of Eval-add.

4 The WAE language

Let’s extend the evaluation semantics to a slightly bigger language: WAE, which adds the “with” construct.
Here’s the concrete syntax (PLAI, p. 16):

3In honour of my undergrad discrete math professor’s advice: “You must always ask yourself: what kind of an animal is it?”

5 2015/9/19



§4 The WAE language

〈WAE〉 ::= 〈num〉
| {+ 〈WAE〉 〈WAE〉}
| {− 〈WAE〉 〈WAE〉}
| {with {〈id〉 〈WAE〉} 〈WAE〉}
| 〈id〉

And here’s the abstract syntax (PLAI, p. 16):

(define-type WAE
[num (n number?)]

[add (lhs WAE?) (rhs WAE?)]

[sub (lhs WAE?) (rhs WAE?)])

[with (name symbol?) (named-expr WAE?) (body WAE?)]

[id (name symbol?)])

4.1 Rules

We just added two new constructors (variants) to the define-type declaration, so we need to say what they
mean. For convenience, I’ll go straight to abstract syntax this time.

Let’s bring in all the evaluation rules from the AE language, but we’ll write e1 and e2 instead of ae1 and
ae2.

(num n) ⇓ n
Eval-num

e1 ⇓ n1 e2 ⇓ n2

(add e1 e2) ⇓ n1 + n2

Eval-add
e1 ⇓ n1 e2 ⇓ n2

(sub e1 e2) ⇓ n1 − n2

Eval-sub

The rule for with says that, if e1 (called named-expr in WAE’s define-type) evaluates to a value v1, and
substituting that value for x in e2 (called body in WAE’s define-type) gives v2, then the entire with evaluates
to v2.

e1 ⇓ v1 subst(e2, x, (num v1)) ⇓ v2

(with x e1 e2) ⇓ v2
Eval-with

Remark. Using v1 and v2 in Eval-with isn’t consistent with n, n1 and n2 in the other rules. But it’s not
quite wrong: by convention, v stands for any value; in this simple WAE language, the only values we have
are numbers.

Exercise 1.
Write the above rule using concrete syntax, as defined by the grammar for 〈WAE〉, instead of abstract syntax.
(Assume that subst(e2, x, v1) works on concrete syntax.)

The above rule uses the (mathematical) function subst that was defined in lecture. Let’s see that definition
again. Actually, to develop the connection between concrete and abstract syntax, let’s see versions for both
concrete and abstract syntax, side-by-side in Figure 1.

One thing to notice about this definition of substitution is that it does not refer to evaluation: we didn’t use
the “evaluates to” symbol (⇓). Rather, our new evaluation rule (Eval-with) “calls” substitution. Effectively,
substitution is a (mathematical) “helper function” for the evaluation semantics.

Example

Let’s try to write an evaluation derivation for
(

with x (num 1) (add (id x) (id x))
)

. We have a with, so we need
to apply Eval-with:

(num 1) ⇓ subst((add (id x) (id x)), x, (num )) ⇓
(

with x (num 1) (add (id x) (id x))
)

⇓
Eval-with

6 2015/9/19



§4 The WAE language

Substitution, for WAE concrete syntax

subst(n, x, v) = n

subst(x, x, v) = v

subst(y, x, v) = y if x 6= y

subst({+ eL eR}, x, v) = {+ subst(eL, x, v)

subst(eR, x, v)}

subst({− eL eR}, x, v) = {− subst(eL, x, v)

subst(eR, x, v)}

subst({with {x e} eB}, x, v) = {with {x subst(e, x, v)} eB}

subst({with {y e} eB}, x, v) = {with {y subst(e, x, v)}

subst(eB, x, v)}

if x 6= y

Substitution, for WAE abstract syntax

subst((num n), x, v) = (num n)

subst((id x), x, v) = v

subst((id y), x, v) = (id y) if x 6= y

subst((add eL eR), x, v) = (add subst(eL, x, v)

subst(eR, x, v))

subst((sub eL eR), x, v) = (sub subst(eL, x, v)

subst(eR, x, v))

subst((with x e eB), x, v) = (with x subst(e, x, v) eB)

subst((with y e eB), x, v) = (with y subst(e, x, v)

subst(eB, x, v))

if x 6= y

Figure 1 Substitution for the WAE language.

I’m leaving blanks for things I don’t know yet, because I’m writing the derivation tree, starting from the root.
Let’s derive the first premise, (num 1) ⇓ · · · . Looking at our rules, we need to apply Eval-num.

(num 1) ⇓ 1
Eval-num

subst((add (id x) (id x)), x, (num 1)) ⇓
(

with x (num 1) (add (id x) (id x))
)

⇓
Eval-with

That 1 gave us the missing argument to subst, so we can use the definition of subst:

(num 1) ⇓ 1
Eval-num

(add (num 1) (num 1)) ⇓
(

with x (num 1) (add (id x) (id x))
)

⇓
Eval-with

For the remaining premise, we need to apply the same old rules from the AE language:

(num 1) ⇓ 1
Eval-num

(num 1) ⇓ 1
Eval-num

(num 1) ⇓ 1
Eval-num

(add (num 1) (num 1)) ⇓ 1+ 1
Eval-add

(

with x (num 1) (add (id x) (id x))
)

⇓
Eval-with

By arithmetic,

(num 1) ⇓ 1
Eval-num

(num 1) ⇓ 1
Eval-num

(num 1) ⇓ 1
Eval-num

(add (num 1) (num 1)) ⇓ 2
Eval-add

(

with x (num 1) (add (id x) (id x))
)

⇓ 2
Eval-with

So, we have successfully showed that the meaning of adding x and x with x being 1 is 2!

Exercise 2.
Have we defined enough new rules, or did we miss something? Give it some thought, then turn the page. . .

7 2015/9/19



§4 The WAE language

4.2 Open expressions not welcome

We added two new constructs (with and id) to our syntax, but only one rule to our evaluation semantics!
That doesn’t seem right.

In fact, it is right (or at least reasonable), because some expressions “pass” the EBNF (for concrete syntax,
or the define-type for abstract syntax), but still don’t really make sense. The WAE

{+ y 3} (abstract syntax: (plus (id y) (num 3)))

has an identifier y that isn’t inside a with, and is a “free identifier” (or “free variable”). We don’t know what
y is supposed to be, so we can’t evaluate y, and therefore can’t evaluate {+ y 3}.

Definition 3. An expression is open if it has free identifiers. An expression is closed if it has no free
identifiers (equivalently, if all identifier instances are bound).

As long as all instances are bound (by with), our rule Eval-with always substitutes for them; we don’t
introduce free identifiers as we evaluate. (In a different kind of course, like CPSC 509, we would prove that
these evaluation rules don’t introduce free identifiers.)

In other words, there is a gap between WAEs that pass the EBNF, and WAEs that mean something (eval-
uate to something). This gap exists in many real programming languages; it didn’t exist in the AE language
because it was so simple. For example, in a statically-typed language like Java, there are plenty of programs
that pass the Java EBNF, but can’t be compiled because of type errors. In DrRacket with the PLAI language,
if you click “Check Syntax”, it will complain about a type-case with a missing branch, even though the
type-case matches the EBNF. (It should probably be called “Check Syntax, And Some Other Stuff”.)

We could still give a rule for id, but it’s going to have to look a little different from our other rules.

(id x) free-variable-error
Eval-free-identifier

This rule does not say that (id x) evaluates to an error: we didn’t write the “evaluates to” symbol (⇓). It says
that (id x) generates a free variable error. In our interpreter, we can implement this rule with the (error . . . )
function.

Question: Could we say that (id x) evaluates to itself?

(id x) ⇓ (id x)

This would say that (id x) evaluates, but it doesn’t evaluate to a number, which isn’t consistent with our other
rules. Is it wrong? That depends on what kind of language you want. If we wanted a language in which free
identifiers stood for unknown quantities, then it could make sense to say that (id x) evaluates to itself.

For the moment, the languages we’re building will see a free identifier as a mistake (perhaps a misspelling
of a with-bound identifier).

8 2015/9/19


	Why dynamic semantics?
	Evaluation semantics
	Rules
	Evaluation rules for AEs

	From the rules to an interpreter
	Restating the rules in abstract syntax

	The WAE language
	Rules
	Open expressions not welcome


