Hash Tables

Hash functions

Open addressing
Review: hash table purpose

• We want to have rapid access to a dictionary entry based on a search key
• The key comes from an extremely large key space
• We have an array which stores a limited number of elements
 – There should be a mathematical relation between the search key and the array index in our table
 – Hash function!
A hash function is a function that maps key values to array indexes.

Hash functions are performed in two steps:
- Map the key value to an integer
- Map the integer to a legal array index

Hash functions should have the following properties:
- Fast
- Deterministic
- Uniformity
Hash function speed

• Hash functions should be fast and easy to calculate
 – Access to a hash table should be nearly instantaneous and in constant time
 – Most common hash functions require a single division on the representation of the key
 – Converting the key to a number should also be able to be performed quickly
A hash function must be *deterministic*

- For a given input it must always return the same value
 - Otherwise it will not generate the same array index
 - And the item will not be found in the hash table
- Hash functions should therefore not be determined by
 - System time
 - Memory location
 - Pseudo-random numbers
Scattering data

• A typical hash function usually results in some *collisions*
 – Where two different search keys map to the same index
 – A *perfect* hash function avoids collisions entirely
 • Each search key value maps to a different index

• The goal is to *reduce* the number and effect of collisions

• To achieve this the data should be distributed evenly over the table
Possible values

i.e. the key space

• Any set of values stored in a hash table is an instance of the universe of possible values

• The universe of possible values may be much larger than the instance we wish to store
 – There are many possible combinations of 10 letters
 – But we might want a hash table to store 1,000 names
Uniformity

• A good hash function generates each value in the output range with the same probability
 – That is, each legal hash table index has the same chance of being generated

• This property should hold for the universe of possible values and for the expected inputs
 – The expected inputs should also be scattered evenly over the hash table
A bad hash function

• A hash table is to store 1,000 numeric estimates that can range from 1 to 1,000,000
 – Hash function \(h(\text{estimate}) = \text{estimate} \mod n \)
 • Where \(n = \text{array size} = 1,000 \)

• Is the distribution of values from the universe of all possible values uniform?
 – What about the distribution of expected values?
Another bad hash function

• A hash table is to store 676 names
 – The hash function considers just the first two letters of a name
 • Each letter is given a value where a = 1, b = 2, …
 • Function = (1\text{st} \text{ letter} \times 26 + \text{value of 2\text{nd} letter}) \mod 676

• Is the distribution of values from the universe of all possible values uniform?
 – What about the distribution of expected values?
General principles

- Use the entire search key in the hash function
- If the hash function uses modulo arithmetic make the table size a prime number
- A simple and (usually) effective hash function is
 - Convert the key value to an integer, x
 - $h(x) = x \mod \text{tablesize}$
 - Where tablesize is the first prime number larger than twice the size of the number of expected values

- But be aware that designing a good hash function is a complex subject and beyond the scope of this course!
Converting strings to integers

• In the previous examples, we had a convenient numeric key which could be easily converted to an array index
 – what about non-numeric keys (e.g. strings)?

• Strings are already numbers (in a way)
 – e.g. 7/8-bit ASCII encoding
 – "cat", 'c' = 0110 0011, 'a' = 0110 0001, 't' = 0111 0100
 – "cat" becomes 6,513,012
Strings to integers

• If each letter of a string is represented as an 8-bit number then for a length n string

 $\text{value} = c_0 \cdot 256^{n-1} + \ldots + c_{n-2} \cdot 256^1 + c_{n-1} \cdot 256^0$

 • For large strings, this value will be very large

 • And may result in overflow (i.e. 64-bit integer, 9 characters will overflow)

• This expression can be factored

 $(\ldots (c_0 \cdot 256 + c_1) \cdot 256 + c_2) \cdot \ldots) \cdot 256 + c_{n-1}$

 • This technique is called *Horner's Method*

 • This minimizes the number of arithmetic operations

 • Overflow can then be prevented by applying the modulo operator after each expression in parentheses
Horner’s method example

• Consider the integer representation of some string, e.g. "Grom"
 – $71 \times 256^3 + 114 \times 256^2 + 111 \times 256^1 + 109 \times 256^0$
 – $= 1,191,182,336 + 7,471,104 + 28,416 + 109 = 1,198,681,965$

• Factoring this expression results in
 – $(((71 \times 256 + 114) \times 256 + 111) \times 256 + 109) = 1,198,681,965$

• Assume that this key is to be hashed to an index using the hash function $key \% 23$
 – $1,198,681,965 \% 23 = 4$
 – $((((71 \% 23) \times 256 + 114) \% 23 \times 256 + 111) \% 23 \times 256 + 109) \% 23 = 4$
Open addressing
• A collision occurs when two different keys are mapped to the same index
 – Collisions may occur even when the hash function is good
 – Inevitable due to pigeonhole principle
• There are two main ways of dealing with collisions
 – Open addressing
 – Separate chaining
Open addressing

• Idea – when an insertion results in a collision look for an empty array element
 – Start at the index to which the hash function mapped the inserted item
 – Look for a free space in the array following a particular search pattern, known as *probing*

• There are three major open addressing schemes
 – Linear probing
 – Quadratic probing
 – Double hashing
Linear probing

- The hash table is searched sequentially
 - Starting with the original hash location
 - For each time the table is probed (for a free location) add one to the index
 - Search $h(search\ key) + 1$, then $h(search\ key) + 2$, and so on until an available location is found
 - If the sequence of probes reaches the last element of the array, wrap around to $arr[0]$
- Linear probing leads to primary clustering
 - The table contains groups of consecutively occupied locations
 - These clusters tend to get larger as time goes on
 - Reducing the efficiency of the hash table
Linear probing example

- Hash table is size 23
- The hash function, \(h(x) = x \mod 23 \), where \(x \) is the search key value
- The search key values are shown in the table

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
						29																			
						32																			
							58																		
							21																		
• Insert 81, $h = 81 \mod 23 = 12$
• Which collides with 58 so use linear probing to find a free space
• First look at 12 + 1, which is free so insert the item at index 13
Linear probing example

- Insert 35, $h = 35 \mod 23 = 12$
- Which collides with 58 so use linear probing to find a free space
- First look at $12 + 1$, which is occupied so look at $12 + 2$ and insert the item at index 14
Linear probing example

- Insert 60, $h = 60 \mod 23 = 14$
- Note that even though the key doesn’t hash to 12 it still collides with an item that did
- First look at 14 + 1, which is free
Linear probing example

- Insert 12, \(h = 12 \mod 23 = 12 \)
- The item will be inserted at index 16
- Notice that primary clustering is beginning to develop, making insertions less efficient

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
						29		32		58	81	35	60									21			
Try It!

• Insert the items into a hash table of 29 elements using linear probing:
 – 61, 19, 32, 72, 3, 76, 5, 34

• Using a hash function: $h(x) = x \mod 29$

• Using a hash function: $h(x) = (x \ast 17) \mod 29$
Readings for this lesson

• Thareja
 – Chapter 15.5.1 (Linear probing)

• Next class
 – Thareja Chapter 15.5.1 (quadratic probing, double hashing)
 – Chapter 15.5.2 (chaining)

• Midterm 2 solution posted to course website! See Piazza for document password – same as midterm 1 solution

• Please bring a pencil to class next Monday for TA evaluation forms!