
Unit #0: Introduction
CPSC 221: Algorithms and Data Structures

Lars Kotthoff1

larsko@cs.ubc.ca

1With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and
Kim Voll.



Course Information

Instructor
Lars Kotthoff, larsko@cs.ubc.ca, ICCS X569

Course website
http://www.ugrad.cs.ubc.ca/~cs221

Office hours
TBD

TAs
see website

http://www.ugrad.cs.ubc.ca/~cs221


Textbooks



Course Policies

No late work; may be flexible with advance notice

10% Labs
15% Programming projects (≈3)
15% Written homework (≈3)
20% Midterm exam
40% Final exam

Must pass the final and combo of labs/assignments to pass the
course.



Collaboration

You may work in groups of two people on:

▷ labs

▷ programming projects

▷ written homework

You may also collaborate with others as long as you follow the rules
(see the website) and acknowledge their help on your assignment.

Don’t violate the collaboration policy.



Course Mechanics

▷ Web page, http://www.ugrad.cs.ubc.ca/~cs221

▷ Piazza,
https://piazza.com/ubc.ca/winterterm22015/cpsc221

▷ UBC Connect, www.connect.ubc.ca

▷ Labs start next week, (roughly) every week

▷ Programming projects will be graded on Linux and g++ (CS
ugrad machines)

http://www.ugrad.cs.ubc.ca/~cs221
https://piazza.com/ubc.ca/winterterm22015/cpsc221
www.connect.ubc.ca


Help

▷ other students

▷ Piazza

▷ TAs, instructors

▷ the interwebs (e.g. Stackoverflow for programming questions,
see https://stackoverflow.com/help/how-to-ask)

https://stackoverflow.com/help/how-to-ask


Your degree is your
responsibility.



Algorithms and Data Structures

▷ What is an algorithm?

High-level, language-independent
description of step-by-step process for solving a problem.

▷ What is a data structure? Specialized format for organizing
and storing data efficiently.

Particular algorithms may work (better) with particular data
structures.



Algorithms and Data Structures

▷ What is an algorithm? High-level, language-independent
description of step-by-step process for solving a problem.

▷ What is a data structure? Specialized format for organizing
and storing data efficiently.

Particular algorithms may work (better) with particular data
structures.



Algorithms and Data Structures

▷ What is an algorithm? High-level, language-independent
description of step-by-step process for solving a problem.

▷ What is a data structure?

Specialized format for organizing
and storing data efficiently.

Particular algorithms may work (better) with particular data
structures.



Algorithms and Data Structures

▷ What is an algorithm? High-level, language-independent
description of step-by-step process for solving a problem.

▷ What is a data structure? Specialized format for organizing
and storing data efficiently.

Particular algorithms may work (better) with particular data
structures.



Algorithms and Data Structures

▷ What is an algorithm? High-level, language-independent
description of step-by-step process for solving a problem.

▷ What is a data structure? Specialized format for organizing
and storing data efficiently.

Particular algorithms may work (better) with particular data
structures.



Observations

▷ programs manipulate data
▷ programs process, store, display, gather data
▷ data can be text, numbers, images, sound

▷ programs must decide how to store and manipulate data
▷ choice affects behaviour of the program

▷ execution speed
▷ memory requirements
▷ maintenance (debugging, extending, etc.)

Being able to analyze this behaviour is what separates good
programmers from bad programmers.



Goals of the Course

▷ become familiar with some of the fundamental data structures
and algorithms in computer science and learn when to use
them

▷ improve your ability to solve problems abstractly with
algorithms and data structures as the building blocks

▷ improve your ability to analyze algorithms (prove correctness;
gauge, compare, and improve time and space complexity)

▷ become modestly skilled with C++ and UNIX (but this is
largely on your own)



Analysis Example



Fibonacci Numbers

▷ first two numbers are 1, each subsequent number sum of two
preceding it

▷ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. . .

▷ common example in CS

▷ applications in many areas (e.g. bee ancestry, branching of
trees, arrangement of leaves on a stem)



Recursive Fibonacci

Calculate the nth Fibonacci number.

Recursive definition:

fibn =


1 if n = 1

1 if n = 2

fibn−1 + fibn−2 if n ≥ 3

C++ code:

int fib(int n) {

if(n <= 2) return 1;

else return fib(n-1) + fib(n-2);

}

Too slow!



Recursive Fibonacci

Calculate the nth Fibonacci number.

Recursive definition:

fibn =


1 if n = 1

1 if n = 2

fibn−1 + fibn−2 if n ≥ 3

C++ code:

int fib(int n) {

if(n <= 2) return 1;

else return fib(n-1) + fib(n-2);

}

Too slow!



Iterative Fibonacci

Idea: Save result of previous computations instead of computing
the same values over and over again.

int fib(int n) {

int F[n+1];

F[0]=0; F[1]=1; F[2]=1;

for(int i=3; i<=n; ++i) {

F[i] = F[i-1] + F[i-2];

}

return F[n];

}

Can we do better?



Iterative Fibonacci

Idea: Save result of previous computations instead of computing
the same values over and over again.

int fib(int n) {

int F[n+1];

F[0]=0; F[1]=1; F[2]=1;

for(int i=3; i<=n; ++i) {

F[i] = F[i-1] + F[i-2];

}

return F[n];

}

Can we do better?



Fibonacci by formula

Idea: Use a formula (a closed form solution to the recursive
definition).

fibn =
φn − (−φ)−n

√
5

where φ = (1 +
√
5)/2 ≈ 1.61803.

#include <cmath>

int fib(int n) {

double phi = (1 + sqrt(5))/2;

return (pow(phi, n) - pow(-phi,-n))/sqrt(5);

}

Sadly, it’s impossible to represent
√
5 exactly on a digital

computer.



Fibonacci with Matrix Multiplication

[
1 1
1 0

] [
1
1

]
=

[
1 + 1
1

]
=

[
fib3
fib2

]
[
1 1
1 0

] [
1 1
1 0

] [
1
1

]
=

[
1 1
1 0

] [
2
1

]
=

[
fib4
fib3

]
[
1 1
1 0

]n−2 [
1
1

]
=

[
fibn
fibn−1

]

How do we calculate

[
1 1
1 0

]n−2

?



Repeated Squaring

A =

[
1 1
1 0

]

A×A = A2

A2 ×A2 = A4

A4 ×A4 = A8

A8 ×A8 = A16

A16 ×A16 = A32

A32 ×A32 = A64

...



Repeated Squaring Example

A100 = A64 × A32 × A4

_ instead of 99 multiplications only 8 (matrix) multiplications

Is this better than iterative Fibonacci?


