Unit \#0: Introduction
 CPSC 221: Algorithms and Data Structures

Lars Kotthoff ${ }^{1}$
larsko@cs.ubc.ca

${ }^{1}$ With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and Kim Voll.

Course Information

Instructor
Lars Kotthoff, larsko@cs.ubc.ca, ICCS X569

Course website
http://www.ugrad.cs.ubc.ca/~cs221
Office hours
TBD
TAs
see website

Textbooks

ELLIOT B. KOFFMAN I PAUL A.T. WOLFGANG

OBJECTS, ABSTRACTION, DATA STRUCTURES AND DESIGN USING

Course Policies

No late work; may be flexible with advance notice 10\% Labs
15% Programming projects (≈ 3)
15% Written homework (≈ 3)
20\% Midterm exam
40\% Final exam
Must pass the final and combo of labs/assignments to pass the course.

Collaboration

You may work in groups of two people on:
\triangleright labs
\triangleright programming projects
\triangleright written homework
You may also collaborate with others as long as you follow the rules (see the website) and acknowledge their help on your assignment.

Don't violate the collaboration policy.

Course Mechanics

\triangleright Web page, http://www.ugrad.cs.ubc.ca/~cs221
\triangleright Piazza, https://piazza.com/ubc.ca/winterterm22015/cpsc221
\triangleright UBC Connect, www. connect.ubc.ca
\triangleright Labs start next week, (roughly) every week
\triangleright Programming projects will be graded on Linux and g++ (CS ugrad machines)

Help

\triangleright other students
\triangleright Piazza
\triangleright TAs, instructors
\triangleright the interwebs (e.g. Stackoverflow for programming questions, see https://stackoverflow.com/help/how-to-ask)

Your degree is your

 responsibility.
Algorithms and Data Structures

\triangleright What is an algorithm?

Algorithms and Data Structures

\triangleright What is an algorithm? High-level, language-independent description of step-by-step process for solving a problem.

Algorithms and Data Structures

\triangleright What is an algorithm? High-level, language-independent description of step-by-step process for solving a problem.
\triangleright What is a data structure?

Algorithms and Data Structures

\triangleright What is an algorithm? High-level, language-independent description of step-by-step process for solving a problem.
\triangleright What is a data structure? Specialized format for organizing and storing data efficiently.

Algorithms and Data Structures

\triangleright What is an algorithm? High-level, language-independent description of step-by-step process for solving a problem.
\triangleright What is a data structure? Specialized format for organizing and storing data efficiently.

Particular algorithms may work (better) with particular data structures.

Observations

\triangleright programs manipulate data
\triangleright programs process, store, display, gather data
\triangleright data can be text, numbers, images, sound
\triangleright programs must decide how to store and manipulate data
\triangleright choice affects behaviour of the program
\triangleright execution speed
\triangleright memory requirements
\triangleright maintenance (debugging, extending, etc.)
Being able to analyze this behaviour is what separates good programmers from bad programmers.

Goals of the Course

\triangleright become familiar with some of the fundamental data structures and algorithms in computer science and learn when to use them
\triangleright improve your ability to solve problems abstractly with algorithms and data structures as the building blocks
\triangleright improve your ability to analyze algorithms (prove correctness; gauge, compare, and improve time and space complexity)
\triangleright become modestly skilled with C++ and UNIX (but this is largely on your own)

Analysis Example

Fibonacci Numbers

\triangleright first two numbers are 1, each subsequent number sum of two preceding it
$\triangleright 1,1,2,3,5,8,13,21,34,55 \ldots$
\triangleright common example in CS
\triangleright applications in many areas (e.g. bee ancestry, branching of trees, arrangement of leaves on a stem)

Recursive Fibonacci

Calculate the nth Fibonacci number.
Recursive definition:

$$
f i b_{n}= \begin{cases}1 & \text { if } n=1 \\ 1 & \text { if } n=2 \\ f i b_{n-1}+f i b_{n-2} & \text { if } n \geq 3\end{cases}
$$

C ++ code:
int fib(int n) \{
if(n <= 2) return 1;
else return fib(n-1) + fib(n-2);
\}

Recursive Fibonacci

Calculate the nth Fibonacci number.
Recursive definition:

$$
f i b_{n}= \begin{cases}1 & \text { if } n=1 \\ 1 & \text { if } n=2 \\ f i b_{n-1}+f i b_{n-2} & \text { if } n \geq 3\end{cases}
$$

C ++ code:
int fib(int n) \{
if(n <= 2) return 1;
else return fib(n-1) + fib(n-2);
\}

Too slow!

Iterative Fibonacci

Idea: Save result of previous computations instead of computing the same values over and over again.

```
int fib(int n) {
    int F[n+1];
    F[0]=0; F[1]=1; F[2]=1;
    for(int i=3; i<=n; ++i) {
        F[i] = F[i-1] + F[i-2];
    }
    return F[n];
}
```


Iterative Fibonacci

Idea: Save result of previous computations instead of computing the same values over and over again.

```
int fib(int n) {
    int F[n+1];
    F[0]=0; F[1]=1; F[2]=1;
    for(int i=3; i<=n; ++i) {
        F[i] = F[i-1] + F[i-2];
    }
    return F[n];
}
```

Can we do better?

Fibonacci by formula

Idea: Use a formula (a closed form solution to the recursive definition).

$$
f i b_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}
$$

where $\varphi=(1+\sqrt{5}) / 2 \approx 1.61803$.

```
#include <cmath>
int fib(int n) {
    double phi = (1 + sqrt(5))/2;
    return (pow(phi, n) - pow(-phi,-n))/sqrt(5);
}
```

Sadly, it's impossible to represent $\sqrt{5}$ exactly on a digital computer.

Fibonacci with Matrix Multiplication

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]} & =\left[\begin{array}{c}
1+1 \\
1
\end{array}\right]
\end{array}=\left[\begin{array}{l}
f i b_{3} \\
f i b_{2}
\end{array}\right] \quad \begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
f i b_{4} \\
f i b_{3}
\end{array}\right] \quad \begin{array}{ll}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n-2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]} & =\left[\begin{array}{c}
f i b_{n} \\
f i b_{n-1}
\end{array}\right]
\end{array}
$$

How do we calculate $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n-2}$?

Repeated Squaring

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& A \times A=A^{2} \\
& A^{2} \times A^{2}=A^{4} \\
& A^{4} \times A^{4}=A^{8} \\
& A^{8} \times A^{8}=A^{16} \\
& A^{16} \times A^{16}=A^{32} \\
& A^{32} \times A^{32}=A^{64}
\end{aligned}
$$

Repeated Squaring Example

$$
A^{100}=A^{64} \times A^{32} \times A^{4}
$$

\rightarrow instead of 99 multiplications only 8 (matrix) multiplications
Is this better than iterative Fibonacci?

