
Unit #10: B+-Trees
CPSC 221: Algorithms and Data Structures

Lars Kotthoff1

larsko@cs.ubc.ca

1With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and
Kim Voll.

Unit Outline

▷ Minimizing disk I/O

▷ B+-Tree properties

▷ Implementing B+-Tree insert

Learning Goals

▷ Describe the structure, navigation and time complexity of a
B+-Tree.

▷ Insert keys into a B+-Tree.

▷ Relate M , L, the number of nodes, and the height of a
B+-Tree.

▷ Compare and contrast B+-Trees with other data structures.

▷ Justify why the number of I/Os becomes a more appropriate
complexity measure (than the number of CPU operations)
when dealing with large datasets and their indexing structures
(e.g., B+-Trees).

▷ Explain the difference between a B-Tree and a B+-Tree.

Memory Hierarchy

Why worry about the number of disk I/Os?

CPU
registers

Cache memory

Main memory

L1
L2
L3

Disk

hundreds of bytes < 1 cycle

a few cycles

tens of cycles

hundreds of cycles

millions of cycles

tens of kilobytes

megabytes

gigabytes

terabytes

Size Access Time

Time Cost: Processor to Disk

Processor

▷ Operates at a few GHz (gigahertz = billion cycles per second).

▷ Several instructions per cycle.

▷ Average time per instruction < 1ns (nanosecond = 10−9 seconds).

Disk

▷ Seek time ≈ 10ms (ms = millisecond = 10−3 seconds)

▷ (Solid State Drives have “seek time” ≈ 0.1ms.)

Result: 10 million instructions for each disk read!
Hold on. . . How long does it take to read a 1TB (Terabyte = 1012

bytes) disk? 1TB × 10ms = 10 billion seconds > 300 years?
What’s wrong? Each disk read/write moves more than a byte.

Memory Blocks

Each memory access to a slower level of the hierarchy fetches a
block of data.

CPU

Cache

Main memory

Disk

a few bytes

10s bytes

a few kilobytes

cache line

page

word

Block NameBlock Size

A block is the contents of consecutive memory locations.
So random access between levels of the hierarchy is very slow.

Chopping Trees into Blocks

Idea
Store data for many adjacent nodes in consecutive memory
locations.

Result
One memory block access provides keys to determine many (more
than two) search directions.

M -ary Search Tree

3 7 12 21

k < 3
3 ≤ k < 7

7 ≤ k < 12
12 ≤ k < 21

21 ≤ k

M -ary tree property

▷ Each node has ≤ M children

Result: Complete tree with n nodes has height Θ(logM n)

Search tree property

▷ Each node has ≤ M − 1 search keys: k1 < k2 < k3 . . .

▷ All keys k in ith subtree obey ki ≤ k < ki+1 for i = 0, 1,

Disk I/O (runtime) for find:

B+-Trees
B+-Trees of order M are specialized M -ary search trees:

▷ ALL leaves are at the same depth!

▷ Internal nodes have between ⌈M/2⌉ and M children.

▷ Values are stored only at leaves. Search keys in internal nodes
only direct traffic. B-Trees store (key, value) pairs at internal
nodes.

▷ Leaves hold between ⌈L/2⌉ and L (key, value) pairs.

▷ The root is special. If internal, it has between 2 and M
children. If a leaf, it holds at most L (key, value) pairs.

Result

▷ Height is Θ(logM n)

▷ Insert, delete, find visit Θ(logM n) nodes

▷ M and L are chosen so that each node fills one page of
memory. Each node visit (disk I/O) retrieves about M/2 to
M keys or L/2 to L (key, value) pairs at a time.

B+-Tree Nodes

Internal node with i search keys

k1 k2 ki· · · ∅∅ · · ·
1 2 i M − 1

left sibling right sibling

▷ i+ 1 subtree pointers

▷ parent and left & right sibling pointers

Leaf with j (key, value) pairs

k1 k2 kj ∅∅ · · ·· · ·
v1 v2 vj

1 2 j L

left sibling right sibling

▷ parent and left & right sibling pointers

▷ values may be pointers to disk records

Each node may hold a different number of items.

Example B+-Tree with M = 4 and L = 4

10 40

3 15 20 5030

15103 4030201 502 5 6 9 11 12 17 25 26 32 33 36 42 60 70

Values in leaf nodes are not shown.

Making a B+-Tree

3

the empty
B+-Tree

M = 3
L = 2

3 14
insert(3) insert(14)

The root is a leaf.

What happens when we now insert(1)?

Splitting the Root

13 14 insert(1) 143

Split the leaf
Make a new root
Copy key 14 up

14

Too many keys for one leaf!
So, make a new leaf and create a parent (the new root) for both.
Why are there duplicate 14 keys?

Splitting a Leaf

1 143

14

1 143

14

1 143

14

insert(26)insert(59)

59

26 59

59

insert(26) causes too many keys for the 14 59 leaf.

So, make a new leaf and copy the middle key (the smallest key in
the new leaf holding the larger keys) up to the common parent.

Propagating Splits

1 143

14

26 59

59 insert(5)

5 14 26 591 3

Add a new leaf
Copy key 5 to parent
There’s no room!

14 595

5 14 26 591 3

5

14

59 Split the internal node
Add a new parent
Move key 14 up

insert(5) causes too many keys for 1 3 leaf.

Copy up key 5 causes too many keys for 14 59 node.

So, make a new internal node and move up the middle key.

Insertion Algorithm

1. Insert (key, value) pair in its leaf.
2. If the leaf now has L+ 1 pairs: // overflow

▷ Split the leaf into two leaves:
▷ Original holds the ⌈(L+ 1)/2⌉ small key pairs.
▷ New one holds the ⌊(L+ 1)/2⌋ large key pairs.

▷ Copy smallest key in new leaf (the middle key) up to parent.

3. If an internal node now has M keys: // overflow
▷ Split the node into two nodes:

▷ Original holds the ⌈(M − 1)/2⌉ small keys.
▷ New one holds the ⌊(M − 1)/2⌋ large keys.

▷ If root, hang the new nodes under a new root. Done.

▷ Move the remaining middle key up to parent & goto 3.

