$$
\text { Unit } \# 10: \mathrm{B}^{+} \text {-Trees }
$$
 CPSC 221: Algorithms and Data Structures

Lars Kotthoff ${ }^{1}$
larsko@cs.ubc.ca

[^0]
Unit Outline

\triangleright Minimizing disk I/O
$\triangleright \mathrm{B}^{+}$-Tree properties
\triangleright Implementing B^{+}-Tree insert

Learning Goals

\triangleright Describe the structure, navigation and time complexity of a B^{+}-Tree.
\triangleright Insert keys into a B^{+}-Tree.
\triangleright Relate M, L, the number of nodes, and the height of a B^{+}-Tree.
\triangleright Compare and contrast B^{+}-Trees with other data structures.
\triangleright Justify why the number of I/Os becomes a more appropriate complexity measure (than the number of CPU operations) when dealing with large datasets and their indexing structures (e.g., B^{+}-Trees).
\triangleright Explain the difference between a B -Tree and a B^{+}-Tree.

Memory Hierarchy

Why worry about the number of disk I/Os?

Time Cost: Processor to Disk

Processor

\triangleright Operates at a few GHz (gigahertz $=$ billion cycles per second).
\triangleright Several instructions per cycle.
\triangleright Average time per instruction <1 ns (nanosecond $=10^{-9}$ seconds).

Disk
\triangleright Seek time $\approx 10 \mathrm{~ms}$ ($\mathrm{ms}=$ millisecond $=10^{-3}$ seconds)
\triangleright (Solid State Drives have "seek time" $\approx 0.1 \mathrm{~ms}$.)
Result: 10 million instructions for each disk read!
Hold on. . . How long does it take to read a 1TB (Terabyte $=10^{12}$
bytes) disk? $1 \mathrm{~TB} \times 10 \mathrm{~ms}=10$ billion seconds >300 years?
What's wrong? Each disk read/write moves more than a byte.

Memory Blocks

Each memory access to a slower level of the hierarchy fetches a block of data.

Block Size

A block is the contents of consecutive memory locations. So random access between levels of the hierarchy is very slow.

Chopping Trees into Blocks

Idea
Store data for many adjacent nodes in consecutive memory locations.

Result

One memory block access provides keys to determine many (more than two) search directions.

M-ary Search Tree

M-ary tree property
\triangleright Each node has $\leq M$ children
Result: Complete tree with n nodes has height $\Theta\left(\log _{M} n\right)$
Search tree property
\triangleright Each node has $\leq M-1$ search keys: $k_{1}<k_{2}<k_{3} \ldots$
\triangleright All keys k in i th subtree obey $k_{i} \leq k<k_{i+1}$ for $i=0,1, \ldots$.
Disk I/O (runtime) for find:

B^{+}-Trees

B^{+}-Trees of order M are specialized M-ary search trees:
\triangleright ALL leaves are at the same depth!
\triangleright Internal nodes have between $\lceil M / 2\rceil$ and M children.
\triangleright Values are stored only at leaves. Search keys in internal nodes only direct traffic. B-Trees store (key, value) pairs at internal nodes.
\triangleright Leaves hold between $\lceil L / 2\rceil$ and L (key, value) pairs.
\triangleright The root is special. If internal, it has between 2 and M children. If a leaf, it holds at most L (key, value) pairs.

Result

\triangleright Height is $\Theta\left(\log _{M} n\right)$
\triangleright Insert, delete, find visit $\Theta\left(\log _{M} n\right)$ nodes
$\triangleright M$ and L are chosen so that each node fills one page of memory. Each node visit (disk I/O) retrieves about $M / 2$ to M keys or $L / 2$ to L (key, value) pairs at a time.

B^{+}-Tree Nodes

Internal node with i search keys

left sibling \longleftrightarrow| 1 | 2 | i | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| k_{1} | k_{2} | \cdots | k_{i} | \emptyset | \cdots | \emptyset |
| | | | | | | |\longrightarrow right sibling

$\triangleright i+1$ subtree pointers
\triangleright parent and left \& right sibling pointers
Leaf with j (key, value) pairs

left sibling -| | 2 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| k_{1} | k_{2} | \ldots | k_{j} | | | |
| v_{1} | v_{2} | \cdots | v_{j} | \emptyset | \cdots | |\rightarrow right sibling

\triangleright parent and left \& right sibling pointers
\triangleright values may be pointers to disk records
Each node may hold a different number of items.

Example B^{+}-Tree with $M=4$ and $L=4$

Values in leaf nodes are not shown.

Making a B^{+}-Tree

The root is a leaf.
What happens when we now insert(1)?

Splitting the Root

Too many keys for one leaf!
So, make a new leaf and create a parent (the new root) for both. Why are there duplicate 14 keys?

Splitting a Leaf

insert(26) causes too many keys for the	14	59
leaf.		

So, make a new leaf and copy the middle key (the smallest key in the new leaf holding the larger keys) up to the common parent.

Propagating Splits

Split the internal node Add a new parent Move key 14 up

insert(5) causes too many keys for | 1 | 3 |
| :--- | :--- | :--- | leaf.

Copy up key 5 causes too many keys for 1459 node.
So, make a new internal node and move up the middle key.

Insertion Algorithm

1. Insert (key, value) pair in its leaf.
2. If the leaf now has $L+1$ pairs: // overflow
\triangleright Split the leaf into two leaves:
\triangleright Original holds the $\lceil(L+1) / 2\rceil$ small key pairs.
\triangleright New one holds the $\lfloor(L+1) / 2\rfloor$ large key pairs.
\triangleright Copy smallest key in new leaf (the middle key) up to parent.
3. If an internal node now has M keys: // overflow
\triangleright Split the node into two nodes:
\triangleright Original holds the $\lceil(M-1) / 2\rceil$ small keys.
\triangleright New one holds the $\lfloor(M-1) / 2\rfloor$ large keys.
\triangleright If root, hang the new nodes under a new root. Done.
\triangleright Move the remaining middle key up to parent \& goto 3.

[^0]: ${ }^{1}$ With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and Kim Voll.

