Unit #9: Graphs

CPSC 221: Algorithms and Data Structures

Lars Kotthoff!
larsko@cs.ubc.ca

With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, Kim
Voll, and Patrick Prosser.

Unit Outline

v

Topological Sort: Sorting vertices

\%

Graph ADT and Graph Representations

\%

Graph Terminology

v

More Graph Algorithms

> Shortest Path (Dijkstra’s Algorithm)
> Minimum Spanning Tree (Kruskal's Algorithm)

Learning Goals

> Describe the properties and possible applications of various
kinds of graphs (e.g. simple, complete), and the relationships
among vertices, edges, and degrees.

> Prove basic theorems about simple graphs (e.g. handshaking
theorem).

> Convert between adjacency matrices/lists and their
corresponding graphs.

> Determine whether two graphs are isomorphic.
> Determine whether a given graph is a subgraph of another.
> Perform breadth-first and depth-first searches in graphs.

> Execute Dijkstra's shortest path and Kruskal's minimum
spanning tree algorithms on a given graph.

Sorting Total Orders

G2 @) @) G () () (&)

@—®

means
x before y

What property does the comparison-based sorting algorithm need

to achieve?

Partial Order: Getting Dressed

@.@

means

x before y

Topological Sort

A topological sort is a total order of the vertices of a graph
G = (V, E) such that if (u,v) is an edge of G then u appears
before v in the order.

Topological Sort Algorithm |

1. Find each vertex's in-degree (# of inbound edges)
2. While there are vertices remaining

2.1 Pick a vertex with in-degree zero and output it
2.2 Reduce the in-degree of all vertices it has an edge to
2.3 Remove it from the list of vertices

Runtime?

Topological Sort Algorithm Il

1. Find each vertex's in-degree
2. Initialize a queue to contain all in-degree zero vertices

3. While there are vertices in the queue

3.1 Dequeue a vertex v (with in-degree zero) and output it
3.2 Reduce the in-degree of all vertices v has an edge to
3.3 Enqueue any of these that now have in-degree zero

Runtime?

Graph ADT

Graphs are a formalism useful for representing relationships
between things.
A graph is represented as a pair of sets: G = (V, F)

> V is a set of vertices: {vi,v2,...,vn}.

> F is a set of edges: {e1,e2,...,en} where each ¢; is a pair of
vertices: ¢; € V x V.

v {4.5.0)
_ _ {(A,B),(B,A),(C,B)}
Operations may include:

> create (with a certain number of vertices)
> insert/delete a given edge/vertex
> iterate over vertices adjacent to a given vertex

> ask if an edge exists connecting two given vertices

Graph Applications

Storing things that are graphs by nature

> Road networks

> Airline flights

> Relationships between people, things

> Room connections in Hunt the Wumpus
Compilers

> call graph — which functions call which others

> control flow graph — which fragments of code can follow
which others

> dependency graphs — which variables depend on which others
Others

> circuits, class hierarchies, meshes, networks of computers, ...

Graph Representations: Adjacency Matrix

A |V| x |V| array A where Afu,v] =1 if and only if (u,v) € E.

1 2 3

Runtime:
> iterate over vertices
> iterate over edges
> iterate over vertices adj. to a vertex
> check whether an edge exists

Memory:

Graph Representations: Adjacency List

An array L of |V| lists. L[u| contains v if and only if (u,v) € E.

S

Runtime:
> iterate over vertices
> iterate over edges
> iterate over vertices adj. to a vertex
> check whether an edge exists

Memory:

Directed vs. Undirected Graphs

In directed graphs, edges have a specific direction:
In undirected graphs, they don't (edges are two-way):

Vertices u and v are adjacent if (u,v) € E.

What property do adjacency matrices of undirected graphs have?

Weighted Graphs

Each edge has an associated weight or cost.

Clinton
Mukilteo

Kingston

‘&. Edmonds

Bainbridge 35
Seattle

60

Bremerton

How can we store weights in an adjacency matrix?
In an adjacency list?

Connectivity

Connected: undirected and there is a path be-
tween any two vertices.

Biconnected: connected even after removing one
vertex.

Strongly connected: directed and there is a path
from any one vertex to any other.

Weakly connected: directed and there is a path
between any two vertices, ignoring direction.

Complete graph: edge between every pair of ver-
tices.

Isomorphism and Subgraphs

Isomorphic: Two graphs are isomorphic if they have the same
structure (ignoring vertex names).

> e

G1 = (V1, E1) is isomorphic to Ga = (Va, E») if there is a
one-to-one and onto function f : V; — Vs such that (u,v) € E; iff

(f(u), f(v)) € Ea.

Subgraph: One graph is a subgraph of another if it is some part of
the other graph.

G1 = (V4, E1) is a subgraph of Gy = (Va, E9) if Vi C V5 and

E, C Es.

Note: We sometimes say H is a subgraph of GG if H is isomorphic
to a subgraph (in the above sense) of G.

Degree

The degree of a vertex v € V' is denoted deg(v) and represents the
number of edges incident on v. An edge from v to itself
contributes 2 towards the degree.

Handshaking Theorem:
If G = (V, E) is an undirected graph, then

> deg(v) = 2|E|

veV

Corollary
An undirected graph has an even number of vertices of odd degree.

Degree/Handshake Example

The degree of a vertex v € V' is the number of edges incident on v.

Let's label each vertex with its degree and calculate the sum...

>N

Degree for Directed Graphs

The in-degree of a vertex v € V (denoted deg™ (v)) is the number
of edges coming in to v.

The out-degree of a vertex v € V (denoted deg™ (v)) is the
number of edges going out of v.

So, deg(v) = deg™ (v) + deg™ (v), and

Z deg™ (v) = Z deg™ (v) = % Z deg(v).

veV veV veV

Trees as Graphs

Tree: A tree is a connected, acyclic, undirected graph.

>N

Rooted tree: A rooted tree is a tree with a single distinguished
vertex called the root.

D A AN

We can imagine directing the edges of a rooted tree away from the
root, to form a connected, acyclic, directed graph, in which there is
a path from the root to every vertex.

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no cycles.

We can topo-sort DAGs.

Single Source, Shortest Path

Given a graph G = (V, E) and a vertex s € V, find the shortest
path from s to every vertex in V.

Many variations:
> weighted vs. unweighted
> no cycles vs. cycles allowed

> positive weights vs. negative weights allowed

Unweighted Single-Source Shortest Path Problem

BreadthFirstSearch (G, s)
Q.enqueue ([s,0])
while Q is not empty
[v,d] = Q.dequeue ()
if v is unmarked
mark v with distance d
for each edge (v,w)
Q.enqueue ([w,d+1])

(Replace the queue with a stack to get depth-first search.)

Weighted Single-Source Shortest Path

Assumes edge weights are non-negative.

Dijkstra's algorithm is a greedy algorithm (makes the current
best choice without considering future consequences).

Intuition: Find shortest paths in order of length.
> Start at the source vertex (shortest path length = 0)

> The next shortest path extends some already discovered
shortest path by one edge.

> Find it (by considering all one-edge extensions) and repeat.

The Trouble with Negative Weight Cycles

What's the shortest path from A to B (or C or D or E)?

Intuition in Action

Dijkstra’s Algorithm Pseudocode

> Initialize the dist to each vertex to co

> Initialize the dist to the source to 0
> While there are unmarked vertices left in the graph

> Select the unmarked vertex v with the lowest dist
> Mark v with distance dist
> For each edge (v, w)
> dist(w) = min {dist(w), dist(v) 4+ weight of (v, w)}

Dijkstra's Algorithm in Action

vertex A B C D E F

dist

distance

The Cloud Proof

> Assume Dijkstra's algorithm finds the correct shortest path to
the first k vertices it visits (the cloud).

> But it fails on the (k + 1)st vertex u.
> So there is some shorter path, P, from s to .
> Path P must contain a first vertex y not in the cloud.

> But since the path,), to u is the shortest path out of the
cloud, the path on P upto y must be at least as long as Q.

> Thus the whole path P is at least as long as). Contradiction
(What did | use in that last step?)

Data Structures for Dijkstra’s Algorithm
|V| times: Select the unknown vertex with the lowest dist.
findMin /deleteMin

|E)| times: dist(w) = min {dist(w), dist(v) + weight of (v,w)}
decreaseKey (i.e. change a key and fix the heap)
find by name (dictionary lookup)

Runtime: (adjacency matrix or adjacency list?)

Fibonacci Heaps

> Very cool variation on Priority Queues
> Amortized O(1) time for decreaseKey
> O(logn) time for deleteMin

Dijkstra's uses |V| deleteMins and |E| decreaseKeys
Runtime with Fibonacci heaps:

Spanning Tree

Spanning tree: a subset of the edges from a connected graph that
> touches all vertices in the graph (spans the graph) and

> forms a tree (is connected and contains no cycles).

Minimum spanning tree: the spanning tree with the least total
edge dist.

Kruskal’s Algorithm for Minimum Spanning Trees

Yet another greedy algorithm:

> Start with an empty tree T

> Repeat: Add the minimum weight edge to 7" unless it forms a
cycle.

Kruskal's Algorithm in Action (1/5)

Kruskal's Algorithm in Action (2/5)

Kruskal's Algorithm in Action (3/5)

Kruskal's Algorithm in Action (4/5)

Kruskal's Algorithm Completed (5/5)

Proof of Correctness

Part |: Kruskal's finds a spanning tree T of graph G.
> T is a tree — no cycles.

> T is spanning — any vertex v not on an edge in T" must have
incident edges that were considered by the algorithm and
would have been included.

> T is connected — if T" was not connected, it must have two or
more components that are connected in G by one or more
edges. One of these edges would have been included by the
algorithm, as it does not create a cycle.

Proof of Correctness

Part Il: Kruskal's finds a minimum spanning tree.
Let S be another spanning tree with weight less than 7.

> Let e be the edge of least weight in T that is not in S.
> Add e to S.
> This creates a cycle C, and C' contains e.
> Cycle C contains an edge ¢/, where €’ is not in T. Otherwise
all edges in C' — e are already in T', and T would also contain a

cycle, and would not be a tree.
> If we replace €’ in S by e we get a spanning tree S’ where

> weight of e < weight of €. e and €’ must be coincident on
one vertex in common, and the above algorithm would have
chosen e in preference to €’ to create T.

> S’ is now one edge closer to being T" than S is to T

> weight of S” < weight of S. Now repeat until 8" =1T.

> Process terminates with S’ = T and weight of T' < weight of
S. Contradiction!

Data Structures for Kruskal's Algorithm
|E| times: Pick the lowest cost edge.
findMin /deleteMin

|E)| times: If w and v are not already connected, connect them.
find representative
union

With “disjoint-set” data structure, O(|E|log |E|) time.

