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Unit Outline

▷ History and Motivation

▷ Parallelism versus Concurrency

▷ Counting Matches in Parallel

▷ Divide and Conquer

▷ Reduce and Map

▷ Analyzing Parallel Programs

▷ Parallel Prefix Sum



Learning Goals

▷ Distinguish between parallelism – improving performance by
exploiting multiple processors – and concurrency – managing
simultaneous access to shared resources.

▷ Use the fork/join mechanism to create parallel programs.

▷ Represent a parallel program as a DAG.

▷ Define Work – the time it takes one processor to complete a
computation; Span – the time it takes an infinite number of
processors to complete a computation; Amdahl’s Law – the
speedup obtainable by parallelizing as a function of the
proportion of the computation that is parallelizable.

▷ Use Work, Span, and Amdahl’s Law to analyze the possible
speedup of a parallel version of a computation.

▷ Determine when and how to use parallel Map, Reduce, and
Prefix Sum patterns.
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Microprocessor Transistor Counts 2000-2011
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Parallelism versus Concurrency

Parallelism
Performing multiple steps at the same time.
16 chefs using 16 ovens.

Concurrency

Managing access by multiple agents to a shared resource.
16 chefs using 1 oven.



Who’s doing the work?

Processor/Core Machine that executes instructions – one
instruction at a time.
In reality, each core may execute (parts of) many

instructions at the same time.

Process Executing instance of a program.
The operating system schedules when a process executes

on a core.

Thread Light-weight process.
Each process may create many threads, but threads are

still scheduled by the operating system.

Task Light-weight thread. (in OpenMP 3.x)
A task may be scheduled for execution using a different

mechanism than the operating system.



Parallelism

Performing multiple (computation) steps at the same time.

Thread1 Thread2

Sum n integers using four processors

Thread3 Thread4

n/4∑
i=1

A[i ]

3n/4∑
i=n/2+1

A[i ]

n/2∑
i=n/4+1

A[i ]

n∑
i=3n/4+1

A[i ]

S1 S2 S3 S4
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Total time: n/4 + 1



Concurrency

Managing access by multiple executing agents to a shared resource.

void enQ(Obj x) {

Q[b] = x;

b=(b+1)%n;

}Thread1 Thread2
enQ("C") enQ("D")

b=(b+1)%n

b=(b+1)%n

Q[b]="D"

Q[b]="C"1
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Models of Parallel Computation

Shared Memory Agents read from and write to a common memory.

Message Passing Agents explicitly send and receive data to/from
other agents. (Distributed computing.)

Data flow Agents are nodes in a directed acyclic graph. Edges
represent data that an agent needs as input
(incoming) and produces as output (outgoing). When
all input is available, the agent can produce output.

Data parallelism Certain operations (e.g., sum) execute in parallel
on collections (e.g., arrays) of data.



Shared Memory in Hardware
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Shared Memory in Software

call
stack
PC
local

variables

Thread0

call
stack
PC
local

variables

call
stack
PC
local

variables

call
stack
PC
local

variables

call
stack
PC
local

variables

call
stack
PC
local

variables

call
stack
PC
local

variables

Thread1

Thread2
Thread3

Thread4

Thread5

Thread6

Shared Memory

PC = program counter = address of currently executing instruction



Count Matches

How many times does the number 3 appear?

3 5 9 3 4 6 7 2 1 8 3 3 5 2 3 9

// Sequential version
int nMatches(int A[], int lo, int hi, int key) {
int m = 0;
for(int i=lo; i<hi; i++)

if(A[i] == key) m++;
return m;

}



Count Matches in Parallel

#include "omp.h"
int nmParallel(int A[], int n, int key) {
int k = 4; if(k > n) k = n;
int results[k]; int nn = n/k;
omp_set_num_threads(k);

#pragma omp parallel
{

int id = omp_get_thread_num(), lo = id * nn;
if(id == k-1) hi = n; else hi = lo + nn;
results[id] = nMatches(A, lo, hi, key);

}
int result = 0;
for(int i = 0; i < k; i++) result += results[i];
return result;

}

k is the number of threads.



Count Matches in Parallel

Thread0 Thread1 Thread2 Thread3

#pragma omp parallel

id=0

lo=0

hi=n/4

id=1

lo=n/4

hi=n/2

id=2

lo=n/2

hi=3n/4

id=3

lo=3n/4

hi=n

A

results

for( int i = 0; i < k; i++ ) result += results[i];

{

}



How many agents (threads)?

Let n be the array size and k be the number of threads.

1. Divide array into n/k pieces.

2. Solve these pieces in parallel. Time Θ(n/k) using k processors

3. Combine by summing the results. Time Θ(k)

Total time: Θ(n/k) + Θ(k).

What’s the best value of k?
√
n

Couldn’t we do better if we had more processors?
Combine is the bottleneck...



Combine in parallel

The process of producing a single answer2 from a list is called
Reduce.

++++++++

++++

++

+

Reduce using ⊕ can be done in parallel, as shown, if

a⊕ b⊕ c⊕ d = (a⊕ b)⊕ (c⊕ d)

which is true for associative operations.

2A “single” answer may be a list or collection of values.



Combine in parallel

How do we create threads that know how to combine in parallel?

++++++++

++++

++

+

Does this look like anything we’ve seen before?

The “merge” part of Mergesort!



Combine in parallel

How do we create threads that know how to combine in parallel?
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The “merge” part of Mergesort!



Count Matches with Divide and Conquer

int nmpDC(int A[], int lo, int hi, int key) {
if(hi - lo <= CUTOFF) return nMatches(A, lo, hi,

key);
int left, right;

#pragma omp task untied shared(left)
{ left = nmpDC(A, lo, (lo + hi)/2, key); }
right = nmpDC(A, (lo + hi)/2, hi, key);

#pragma omp taskwait
return left + right;

}

int nmpDivConq(int A[], int n, int key) {
int result;

#pragma omp parallel
#pragma omp single
{ result = nmpDC(A, 0, n, key); }
return result;

}



Efficiency Considerations

Why use tasks instead of threads?

Creating and scheduling threads is more expensive.

Why use CUTOFF to switch to a sequential algorithm?

Creating and scheduling tasks is still somewhat
expensive. We want to balance that expense with the
amount of work we give the task.



Divide and Conquer in Parallel

+

+

+

++++

+

+++

+ +

+



Divide and Conquer in Parallel

+

+

+

++++

+

+++

+ +

+



Divide and Conquer in Parallel

+

+

+
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+ +

+

Fork

Fork Process creates (forks) a new child process. Both continue
executing the same code but they have different IDs.



Divide and Conquer in Parallel
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Fork Fork
Fork

Fork

The child and the parent can fork more children.



Divide and Conquer in Parallel
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Join

Join Process waits to recombine (join) with its child until the child
reaches the same join point.



Divide and Conquer in Parallel
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Join

Still waiting... Why wait?
Join insures that the child is done before the parent uses its value.



Divide and Conquer in Parallel
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Join

Join

After join the child process terminates and the parent continues.



Count Matches with Divide and Conquer

Fork

Join

int nmpDC(int A[], int lo, int hi, int key) {
if( hi - lo <= CUTOFF ) return nMatches(A, lo, hi

, key);
int left, right;

#pragma omp task untied shared(left)
{ left = nmpDC(A, lo, (lo + hi)/2, key); }
right = nmpDC(A, (lo + hi)/2, hi, key);

#pragma omp taskwait
return left + right;

}
int nmpDivConq(int A[], int n, int key) {
int result;

#pragma omp parallel
#pragma omp single
{ result = nmpDC(A, 0, n, key); }
return result;

}



Efficiency with many processors

Let n be the array size and P the number of processors.
Old Way

1. Divide array into n/P pieces.

2. Solve these pieces in parallel. Time Θ(n/P )

3. Combine by summing the results. Time Θ(P )

Total time: Θ(n/P ) + Θ(P ).

Suppose the number of processors, P , is infinite...
Divide and Conquer Way

1. Recursively divide array into CUTOFF-size pieces. Time
Θ(log n)

2. Solve these pieces in parallel. Time Θ(CUTOFF)

3. Combine by summing the results. Time Θ(logn)

Total time: Θ(log n).



Efficiency with many processors
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Is Counting Matches simply a Reduction?

FORALL x in A:
score = (if x == key then 1 else 0)
total += score

FORALL is short for “Do every iteration in parallel.”

// OpenMP equivalent
#pragma omp parallel for reduction(+:total)
for(i=0; i < n; i++)
total += (A[i] == key) ? 1 : 0;



Map

A map operates on each element of a collection independently to
create a new collection of the same size.

▷ No combining results.

▷ Some hardware supports this directly.

Counting matches is a Map (using equalsMap) followed by a
Reduce (using +).

void equalsMap(int score[], int A[], int n,
int key) {

FORALL(i=0; i<n; ++i) {
score[i] = (A[i] == key) ? 1 : 0;

}
}



Another Map Example: Vector Addition

⟨1, 2, 3, 4, 5⟩+ ⟨2, 5, 3, 3, 1⟩ = ⟨3, 7, 6, 7, 6⟩

void vectorAdd(int sum[], int u[], int v[],
int n) {

FORALL(i=0; i<n; ++i) {
sum[i] = u[i] + v[i];

}
}



Parallel programming by Patterns

Map and Reduce are very common patterns in parallel programs.

Learn to recognize when an algorithm can be written in terms of
Map and Reduce. They make parallel programming simple.

By the way... Google’s MapReduce and the open-source Hadoop
provide parallel Map and Reduce using clusters of computers.

▷ system distributes data and manages fault tolerance

▷ you provide Map and Reduce functions

▷ old functional programming ideas (map and fold) take over
the world!



Map/Reduce Exercises

1. Count the number of prime numbers in an array of positive
integers.

2. Find the ten largest numbers in an array.

3. Given a (small) pattern string and a (large) text string, find
the first occurrence of the pattern in the text.



Modeling Parallel Programs as DAGs

Every parallel program can be modeled as a directed, acyclic graph
(DAG).

Nodes represent a constant
amount of sequential work.

Edges represent dependency:
(x, y) means work x must
complete before work y starts.



Runtime of Parallel Programs

Let TP (n) be the running time of a parallel program using P
processors on an input of size n.

T1(n) is called the Work

Work equals (some constant times)
the number of nodes.

T∞(n) is called the Span

Span equals (some constant times)
the number of nodes on the longest
path.

lg
n

n

For nmDivConq on input of size n (or n× CUTOFF), the number
of nodes is 3n− 2 so T1(n) ∈ Θ(n), and the longest path has
2 lg n+ 1 nodes so T∞(n) ∈ Θ(log n).



Runtime as a function of n and P

What is TP (n) in terms of n and P?

▷ TP (n) ≥ T1(n)/P because otherwise we didn’t do all the
work.

▷ TP (n) ≥ T∞(n) because P < ∞.

Therefore

TP (n) ∈ Ω(max{T1(n)/P, T∞(n)}) = Ω(T1(n)/P + T∞(n))

An asymptotically optimal runtime is

Tp(n) ∈ Θ(T1(n)/P + T∞(n)).

Good OpenMP implementations guarantee Θ(T1(n)/P + T∞(n))
as their expected runtime.



Runtime of Parallel Divide and Conquer

lg
n

n

Work T1(n) ∈ Θ(n).
Span T∞(n) ∈ Θ(logn).
So TP (n) ∈ Θ(n/P + log n).

Since Span (T∞(n)) is so small (Θ(log n)), our runtime is
dominated by n/P for large n.
This means we get linear (in P ) speedup over the sequential
program, which is the best we could hope for.



Runtime of Parallel Count Matches

n
k

n
k

n
k
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kk

x takes time x

omp_set_num_threads(k);
#pragma omp parallel
{
int id=omp_get_thread_num(), lo = id * nn, hi;
if(id == k-1) hi = n; else hi = lo + nn;
results[id] = nMatches(A, lo, hi, key);

}
int result = 0;
for(int i = 0; i < k; i++) result += results[i];
return result;

Work T1(n) ∈ Θ(n+ k) Span T∞(n) ∈ Θ(n/k + k)

Thus, TP (n) ∈ Θ(n+k
P + n/k+ k) ⊂ Ω(

√
n) (for k =

√
n threads).



Amdahl’s Law

Suppose we know that s fraction of the Work can’t be parallelized.

TP (n) ≥ sT1(n) + (1− s)T1(n)/P
since the best we can hope for is linear speedup on the parallel part.

Amdahl’s Law The overall speedup with P processors is:

T1(n)

TP (n)
≤ 1

s+ (1− s)/P

The overall speedup with ∞ processors is: T1(n)
T∞(n) ≤

1
s

Fred Brooks: “Nine women can’t make a baby in one month.”



Amdahl’s Law – Examples

T1(n)

TP (n)
≤ 1

s+ (1− s)/P

T1(n)

T∞(n)
≤ 1

s

Suppose s = 33% of a program is sequential.

▷ What speedup can you get from 2 processors?

▷ What speedup can you get from 1,000,000 processors?

▷ Suppose you want 100x speedup with 256 processors?

100 ≤ 1

s+ (1− s)/256

How small must s be?



Prefix Sum

Given an input array, in, of n numbers, produce an output array,
out, where out[i] = in[0] + in[1] + · · ·+ in[i].
For example,

42in

out 42

3 4 7 1 10 5 2

45 49 56 57 67 72 74

vector<int> prefixSum(const vector<int>& in) {
vector<int> out(in.size());
out[0] = in[0];
for(int i=1; i<n; ++i)
out[i] = out[i-1] + in[i];

return out;
}

Map/Reduce?
Work T1(n) ∈ Θ(n) Span T∞(n) ∈ Θ(n)



Parallel Prefix Sum

The parallel prefix sum algorithm has two parts:

Part 1 For every subtree of the parallel divide-and-conquer Sum
tree, calculate the sums of all leaf entries in the subtree.

Easy. That’s how the Sum tree works.

Part 2 Accumulate the sums from disjoint subtrees to the left of
each array position.

By choosing the biggest subtrees, we accumulate at most
lg n+ 1 subtree sums for each position.

Accumulate all the red subtree sums to get the prefix sum at ?.

?



Parallel Prefix Sum

+

+

+

++++

+

+++

+ +

+

in

temp

5 6 3 2 6 7 3 12 2 1 1 3 4 2 2 8
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Parallel Prefix Sum Part 1
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Work T1(n) ∈ Θ(n) Span T∞(n) ∈ Θ(log n)



Parallel Prefix Sum Part 2

temp5 11 3 16 6 6713 3 44 2 3 1 7 4 6 2
0

out5 11 14 16 22 29 32 44 46 47 48 51 55 57 59 67

+

++++++++

++++

+

+

Work T1(n) ∈ Θ(n) Span T∞(n) ∈ Θ(log n)



Pack (a.k.a. Filter) using prefix sum

Given a predicate (Boolean function) p and an array in, produce an
array out of those in[i] such that p(in[i]) is true, in the same order
that they appear in in.

Example:
in = [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
p(x) = (x > 10)
out = [17, 11, 13, 19, 24]

1. Map to compute bit-vector of true elements.
in [17, 4, 6, 8, 11, 5, 13, 19, 0, 24 ]

bits [ 1, 0, 0, 0, 1, 0, 1, 1, 0, 1 ]

2. Prefix Sum on the bit-vector.
bitsum[ 1, 1, 1, 1, 2, 2, 3, 4, 4, 5 ]

3. Map to produce the output.

FORALL(i=0; i<n; ++i)
if(bits[i]) out[bitsum[i]-1] = in[i];

Work T1(n) ∈ Θ(n) Span T∞(n) ∈ Θ(log n)


