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Unit Outline

> History and Motivation

> Parallelism versus Concurrency
> Counting Matches in Parallel
> Divide and Conquer

> Reduce and Map

> Analyzing Parallel Programs

> Parallel Prefix Sum



Learning Goals

> Distinguish between parallelism — improving performance by
exploiting multiple processors — and concurrency — managing
simultaneous access to shared resources.

> Use the fork/join mechanism to create parallel programs.
> Represent a parallel program as a DAG.

> Define Work — the time it takes one processor to complete a
computation; Span — the time it takes an infinite number of
processors to complete a computation; Amdahl’s Law — the
speedup obtainable by parallelizing as a function of the
proportion of the computation that is parallelizable.

> Use Work, Span, and Amdahl’s Law to analyze the possible
speedup of a parallel version of a computation.

> Determine when and how to use parallel Map, Reduce, and
Prefix Sum patterns.
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The Free Lunch Is Over A Fundamental Turn Toward Concurrency in Software By Herb Sutter



Microprocessor Transistor Counts 1971-2011
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Microprocessor Transistor Counts 2000-2011
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Moore's Law is only one example

Exponential Growth of Computing for 110 Years
Moore's Law was the fifth, not the first,
paradigm to bring exponential growth in computing
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Parallelism versus Concurrency

Parallelism
Performing multiple steps at the same time.
16 chefs using 16 ovens.

Concurrency

Managing access by multiple agents to a shared resource.
16 chefs using 1 oven.



Who's doing the work?

Processor/Core Machine that executes instructions — one

Process

Thread

Task

instruction at a time.
In reality, each core may execute (parts of) many
instructions at the same time.

Executing instance of a program.
The operating system schedules when a process executes
on a core.

Light-weight process.
Each process may create many threads, but threads are
still scheduled by the operating system.

Light-weight thread. (in OpenMP 3.x)
A task may be scheduled for execution using a different
mechanism than the operating system.



Parallelism
Performing multiple (computation)

Sum n integers using four processors

steps at the same time.
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Concurrency

Managing access by multiple executing agents to a shared resource.

Shared Queue
void enQ(0bj x) {
Qlbl = x;
b=(b+1)%n;

Threadl Thread2 }
0 enQ("C") enQ("D") (ATBT T T T 1
f b
1 Q[bl="c" (ATBICT T T 1]
° f b
E2 Q[b]l="D" (ATBIDI T T 1]
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Models of Parallel Computation

Shared Memory Agents read from and write to a common memory.

Message Passing Agents explicitly send and receive data to/from
other agents. (Distributed computing.)

Data flow Agents are nodes in a directed acyclic graph. Edges
represent data that an agent needs as input
(incoming) and produces as output (outgoing). When
all input is available, the agent can produce output.

Data parallelism Certain operations (e.g., sum) execute in parallel
on collections (e.g., arrays) of data.



Shared Memory in Hardware

Processor0 Processorl Processor2 Processor3
CPU CPU CPU CPU
Cache Cache Cache Cache

I

Shared Memory




Shared Memory in Software

Thread3

Thread2 Thread4
N ( call N
Threadl call stack call Thread5
) stack BC stack )

Thread0 stack I:c(;l local I:c(;l stack Thread6
( call pPC . variables . PC ( call
stack Tocal variables J variables Tocal stack
PC variables \lvariabl?s) PC
local local
variables variables

Shared Memory

PC = program counter = address of currently executing instruction



Count Matches

HEDBDhUBBDBRBRRBG

// Sequential version
int nMatches (int A[], int lo, int hi, int key) {
int m = 0;
for (int i=lo; i<hi; i++)
if(A[i] == key) mt++;
return m;

}



Count Matches in Parallel

#include "omp.h"

int nmParallel (int A[], int n, int key) {
int k = 4; if(k > n) k = n;
int results(k]; int nn = n/k;
omp_set_num_threads (k) ;

#pragma omp parallel
{

int id = omp_get_thread_num(), lo = id * nn;
if(id == k-1) hi = n; else hi = lo + nn;
results[id] = nMatches (A, lo, hi, key);

}

int result = 0;

for(int 1 = 0; i < k; 1i++4) result += results[i];

return result;

}

k is the number of threads.



Count Matches in Parallel

#pragma omp parallel

{
Thread0 Threadl Thread?2 Thread3
T
id=0 id=1 id=2 id=3
1o0=0 lo=n/4 lo=n/2 lo=3n/4
hi=n/4 hi=n/2 hi=3n/4 hi=n
results‘ ‘

\QJ}
for( int 1 = 0; i < k; i++ ) result += results[i];

v




How many agents (threads)?

Let n be the array size and k£ be the number of threads.
1. Divide array into n/k pieces.
2. Solve these pieces in parallel. Time ©(n/k) using k processors
3. Combine by summing the results. Time O(k)

Total time: O(n/k) + O(k).

What's the best value of k7 \/n

Couldn't we do better if we had more processors?
Combine is the bottleneck...



Combine in parallel

The process of producing a single answer? from a list is called
Reduce.

Reduce using & can be done in parallel, as shown, if
adbdDcdd=(a®b)®(cdd)

which is true for associative operations.

2A “single” answer may be a list or collection of values.



Combine in parallel

How do we create threads that know how to combine in parallel?

TR RRRRE R RRRRRRRERRRRRRRRREEREMIMIR
O ORaO

Does this look like anything we've seen before?



Combine in parallel

How do we create threads that know how to combine in parallel?

TR RRRRE R RRRRRRRERRRRRRRRREEREMIMIR
O ORaO

Does this look like anything we've seen before?

The "merge” part of Mergesort!



Count Matches with Divide and Conquer

int nmpDC(int A[], int lo, int hi, int key) {
if (hi - lo <= CUTOFF) return nMatches (A, lo, hi,
key) ;

int left, right;
#pragma omp task untied shared(left)
{ left = nmpDC (A, lo, (lo + hi)/2, key); }
right = nmpDC(A, (lo + hi)/2, hi, key);
#pragma omp taskwait
return left + right;

}

int nmpDivCong(int A[], int n, int key) {
int result;

#pragma omp parallel

#pragma omp single
{ result nmpDC (A, 0, n, key); 1}
return result;



Efficiency Considerations

Why use tasks instead of threads?

Creating and scheduling threads is more expensive.

Why use CUTOFF to switch to a sequential algorithm?

Creating and scheduling tasks is still somewhat
expensive. We want to balance that expense with the
amount of work we give the task.



Divide and Conquer in Parallel
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Divide and Conquer in Parallel
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Divide and Conquer in Parallel

Fork
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Fork Process creates (forks) a new child process. Both continue
executing the same code but they have different IDs.



Divide and Conquer in Parallel

Fork
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The child and the parent can fork more children.



Divide and Conquer in Parallel
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Join Process waits to recombine (join) with its child until the child
reaches the same join point.



Divide and Conquer in Parallel
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Still waiting... Why wait?
Join insures that the child is done before the parent uses its value.



Divide and Conquer in Parallel
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After join the child process terminates and the parent

continues.



Count Matches with Divide and Conquer

int nmpDC(int A[], int lo, int hi, int key) {

if( hi - lo <= CUTOFF ) return nMatches (A, lo, hi
r key);
int left, right;

#pragma omp task untied shared(left) Fork
{ left = nmpDC(A, lo, (lo + hi)/2, key); }
right = nmpDC (A, (lo + hi)/2, hi, key);

#pragma omp taskwait Join
return left + right;

}

int nmpDivCong(int A[], int n, int key) {
int result;

#pragma omp parallel

#pragma omp single
{ result = nmpDC(A, 0, n, key); }
return result;



Efficiency with many processors

Let n be the array size and P the number of processors.
Old Way

1. Divide array into n/P pieces.
2. Solve these pieces in parallel. Time O(n/P)

3. Combine by summing the results. Time ©(P)
Total time: ©(n/P) + O(P).



Efficiency with many processors

Let n be the array size and P the number of processors.
Old Way

1. Divide array into n/P pieces.

2. Solve these pieces in parallel. Time O(n/P)

3. Combine by summing the results. Time ©(P)
Total time: ©(n/P) + O(P).
Suppose the number of processors, P, is infinite...
Divide and Conquer Way

1. Recursively divide array into CUTOFF-size pieces. Time
O(logn)
2. Solve these pieces in parallel. Time O(CUTOFF)
3. Combine by summing the results. Time ©(logn)
Total time: O(logn).



Is Counting Matches simply a Reduction?

FORALL x in A:
score = (if x == key then 1 else 0)
total += score

FORALL is short for “Do every iteration in parallel.”

// OpenMP equivalent
#fpragma omp parallel for reduction (+:total)
for (i=0; 1 < n; 1i++)
total += (A[i] == key) 2 1 : 0;



Map

A map operates on each element of a collection independently to
create a new collection of the same size.

> No combining results.

> Some hardware supports this directly.

Counting matches is a Map (using equalsMap) followed by a
Reduce (using +).

void equalsMap (int score[], int A[], int n,

int key) {
FORALL (i=0; i<n; ++1i) {
score[i] = (A[i] == key) 2?2 1 : 0;



Another Map Example: Vector Addition

(1,2,3,4,5) + (2,5,3,3,1) = (3,7,6,7,6)

void vectorAdd(int sum[], int u[], int v[],

int n) {
FORALL (i=0; i<n; ++i) {
sum[i] = uli] + v[i];

}



Parallel programming by Patterns

Map and Reduce are very common patterns in parallel programs.

Learn to recognize when an algorithm can be written in terms of
Map and Reduce. They make parallel programming simple.

By the way... Google's MapReduce and the open-source Hadoop
provide parallel Map and Reduce using clusters of computers.

> system distributes data and manages fault tolerance
> you provide Map and Reduce functions

> old functional programming ideas (map and fold) take over
the world!



Map/Reduce Exercises

1. Count the number of prime numbers in an array of positive
integers.

2. Find the ten largest numbers in an array.

3. Given a (small) pattern string and a (large) text string, find
the first occurrence of the pattern in the text.



Modeling Parallel Programs as DAGs

Every parallel program can be modeled as a directed, acyclic graph
(DAG).

Nodes represent a constant
amount of sequential work.

Edges represent dependency:
(z,y) means work = must

complete before work y starts. —




Runtime of Parallel Programs

Let Tp(n) be the running time of a parallel program using P
processors on an input of size n.

|

<—Ilgn—s

Ty (n) is called the Work 1

Work equals (some constant times)
the number of nodes.

(]
|~
Too(n) is called the Span

Span equals (some constant times)
the number of nodes on the longest
path.

()

E—SE——0¢€

|

For nmDivCong on input of size n (or n X CUTOFF), the number
of nodes is 3n — 2 so T1(n) € O(n), and the longest path has
21gn + 1 nodes so Too(n) € O(logn).



Runtime as a function of n and P

What is Tp(n) in terms of n and P?

> Tp(n) > T1(n)/P because otherwise we didn't do all the
work.

> Tp(n) > Tw(n) because P < oc.

Therefore
Tp(n) € Q(max{T1(n)/P,Tx(n)}) = UTi(n)/P + Too(n))
An asymptotically optimal runtime is
Tp(n) € O(T1(n)/P + T (n)).

Good OpenMP implementations guarantee ©(71(n)/P + Too(n))
as their expected runtime.



Runtime of Parallel Divide and Conquer

Work T7(n) € ©(n).
Span T (n) € O(logn). {—‘
}

|
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So Tp(n) € ©(n/P +logn).
1

|

Since Span (T (n)) is so small (©(logn)), our runtime is
dominated by n/P for large n.

This means we get linear (in P) speedup over the sequential
program, which is the best we could hope for.



omp_set_num_threads (k) ;

#pragma omp parallel

{
int id=omp_get_thread num(), lo = id = nn, hi;
if (id == k-1) hi = n; else hi = lo + nn;
results[id] = nMatches (A, lo, hi, key);

}

int result = 0;

for(int 1 = 0; 1 < k; 1i+4++) result += results[i];

return result;

Work T1(n) € ©(n + k) Span T (n) € O(n/k + k)

Thus, Tp(n) € O(%FE +n/k+k) C Q(y/n) (for k = /n threads).



Amdahl's Law

Suppose we know that s fraction of the Work can’t be parallelized.

Tp(n) > sTi(n) + (1 — s)T1(n)/P
since the best we can hope for is linear speedup on the parallel part.

Amdahl's Law The overall speedup with P processors is:

Tl(n) < 1
Tp(n) — s+ (1—s)/P
The overall speedup with oo processors is: g;(&)) < %

Fred Brooks: “Nine women can’'t make a baby in one month.”



Amdahl’'s Law — Examples

Tl(n) < 1 Tl(n)
Tp(n) — s+ (1—s)/P Too(n)

Suppose s = 33% of a program is sequential.

> What speedup can you get from 2 processors?
> What speedup can you get from 1,000,000 processors?
> Suppose you want 100x speedup with 256 processors?

100 <
= s+ (1—s)/256

How small must s be?



Prefix Sum

Given an input array, in, of n numbers, produce an output array,
out, where out[i] = in[0] + in[1] + - - - + in[¢].
For example,

in [42]3]4]7]1]10]5]2]

out |42[45]49]56|57]67[72]74|

vector<int> prefixSum(const vector<int>& in) {
vector<int> out (in.size());
out [0] = 1in[0];
for (int i=1; i<n; ++1i)
out [1] = out[i-1] + in[i];
return out;

}

Map/Reduce?
Work T (n) € O(n) Span T (n) € ©(n)



Parallel Prefix Sum

The parallel prefix sum algorithm has two parts:

Part 1 For every subtree of the parallel divide-and-conquer Sum
tree, calculate the sums of all leaf entries in the subtree.

Easy. That's how the Sum tree works.

Part 2 Accumulate the sums from disjoint subtrees to the left of
each array position.

By choosing the biggest subtrees, we accumulate at most
lgn + 1 subtree sums for each position.

LTI I I I

Accumulate all the red subtree sums to get the prefix sum at *.




Parallel Prefix Sum

0\5\11\3\16\6\13\3\44\2\3\1\7\4\6\2\67\temp
— I

| 5 11[14]16]22]2932]44 4647|4851 55|57 [ 59| 67 | out




Parallel Prefix Sum Part 1

15]6]3]2 73 ][12] 3[4]2]2]8
H 3 — 3 H 2
+ + - + - + +
ot s Tt | Tt | o
6 T T3 N B

44

|5]11][3]16]6[13[3[44[2[3|1]|7|4]6]2]67]temp

Work T7(n) € ©(n)

Span T (n) € ©(logn)



Parallel Prefix Sum Part 2

° (5 [11]316]6[13[3 44| 2[3[1]7]4]6]2]67]temp

| P | P

+"‘<Ja“+'_‘69“+_‘@“+
|5 |11]14]16]22]29]32[44 46474851 5557|5967 out

Work Ti(n) € ©(n) Span T (n) € ©(logn)



Pack (a.k.a. Filter) using prefix sum

Given a predicate (Boolean function) p and an array in, produce an
array out of those in[i| such that p(in[i]) is true, in the same order
that they appear in in.
in = [17,4,6,8,11,5,13,19,0, 24]
Example: p(z) = (x > 10)
out = (17,11, 13, 19, 24]

1. Map to compute bit-vector of true elements.
in [17, 4, 6, 8,11, 5,13,19, 0, 24]
bits[ 1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Prefix Sum on the bit-vector.
bitsum[ 1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Map to produce the output.

FORALL (1=0; i<n; ++i)
if (bits[i]) out[bitsum[i]-1] = in[i];

Work Ti(n) € ©(n) Span T (n) € ©(logn)



