Unit #7: AVL Trees

CPSC 221: Algorithms and Data Structures

Lars Kotthoff¹ larsko@cs.ubc.ca

 $^{^1\}mbox{With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and Kim Voll.$

Unit Outline

- ▷ Binary search trees
- ▷ Balance implies shallow (shallow is good)
- ▶ How to achieve balance
- ▷ Single and double rotations
- ▷ AVL tree implementation

Learning Goals

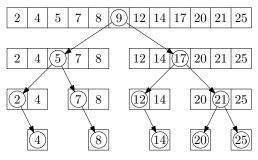
- ▷ Compare and contrast balanced/unbalanced trees.
- Describe and apply rotation to a BST to achieve a balanced tree.
- Recognize balanced binary search trees (among other tree types you recognize, e.g., heaps, general binary trees, general BSTs).

Dictionary ADT Implementations

Worst Case Runtime:

	insert	find	delete (after find)
Linked list			
Unsorted array			
Sorted array			
Hash table			

Binary Search in a Sorted List

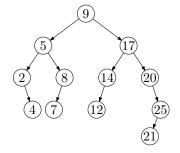


```
int bSearch(int A[], int key, int i, int j) {
  if(j < i) return -1;
  int m = (i + j) / 2;
  if(key < A[m])
    return bSearch(A, key, i, m-1);
  else if(key > A[m])
    return bSearch(A, key, m+1, j);
  else return m;
}
```

Binary Search Tree as Dictionary Data Structure

Binary tree property

 \triangleright each node has ≤ 2 children

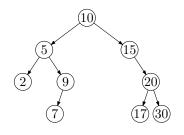


Search tree property

- ▷ all keys in left subtree smaller than node's key
- ▷ all keys in right subtree larger than node's key

Result: easy to find any given key

In-, Pre-, Post-Order Traversal



 $In\text{-order: }2,\ 5,\ 7,\ 9,\ 10,\ 15,\ 17,\ 20,\ 30$

Pre-order:

Post-order:

Beauty is Only $O(\log n)$ Deep

Binary Search Trees are fast if they're shallow. Know any shallow trees?

- ▷ perfectly complete
- ▷ almost complete (except the last level, like a heap)
- ▷ anything else?

Beauty is Only $O(\log n)$ Deep

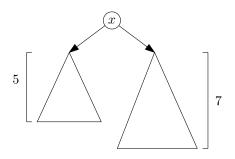
Binary Search Trees are fast if they're shallow. Know any shallow trees?

- ▷ perfectly complete
- ▷ almost complete (except the last level, like a heap)
- ▷ anything else?

What matters here?

Siblings should have about the same height.

Balance



```
\begin{aligned} & \mathsf{balance}(x) = \mathsf{height}(x.\mathsf{left}) - \mathsf{height}(x.\mathsf{right}) \\ & \mathsf{height}(\mathtt{NULL}) = -1. \end{aligned}
```

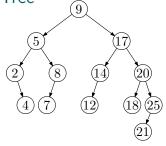
If for all nodes x,

- \triangleright balance(x) = 0 then perfectly balanced.
- \triangleright |balance(x)| is small then balanced enough.
- $> -1 \le \mathsf{balance}(x) \le 1$ then tree height $\le c \lg n$ where c < 2.

AVL (Adelson-Velsky and Landis) Tree

Binary tree property

 \triangleright each node has \leq 2 children



Search tree property

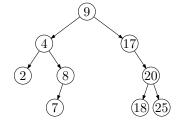
- ▷ all keys in left subtree smaller than node's key
- ▷ all keys in right subtree larger than node's key

Balance property

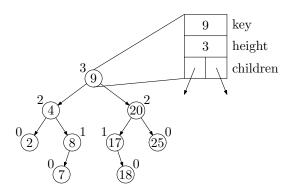
▷ For all nodes x, $-1 \le \mathsf{balance}(x) \le 1$

Result: height is $\Theta(\log n)$.

Is this an AVL tree?

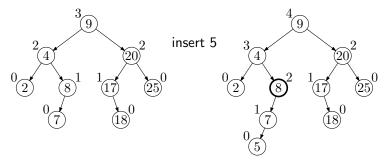


An AVL Tree



How Do We Stay Balanced?

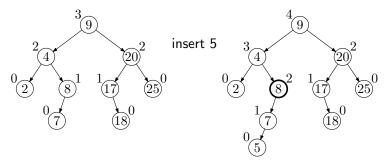
Suppose we start with a balanced search tree (an AVL tree).



It's no longer an AVL tree. What can we do?

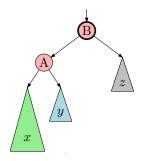
How Do We Stay Balanced?

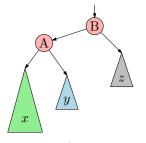
Suppose we start with a balanced search tree (an AVL tree).

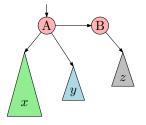


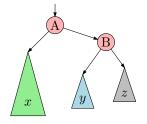
It's no longer an AVL tree. What can we do?

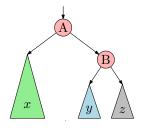
ROTATE!











Time Complexity of Rotation

```
 ▷ O(1) 

▷ O(\lg n) 

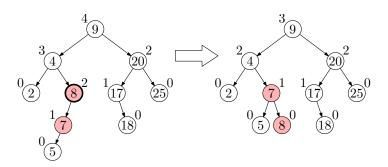
▷ O(n) 

▷ O(n \lg n) 

▷ O(n<sup>2</sup>) 

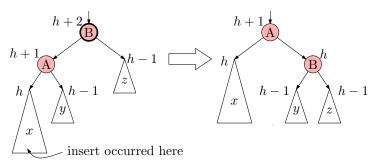
▷ none of the above
```

Single Rotation



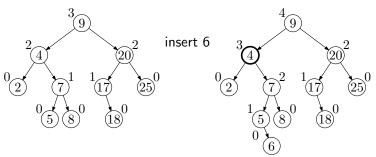
Single Rotation

rotateRight is shown. There's also a symmetric rotateLeft.



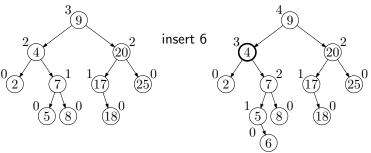
After rotation, subtree's height is the same as before insert. So heights of ancestors don't change.

Start with



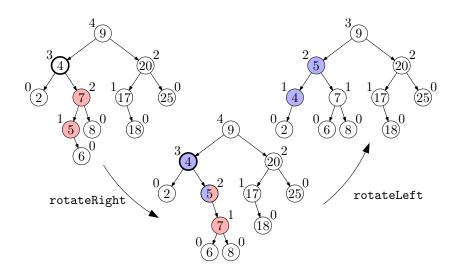
A single rotation won't fix this.

Start with

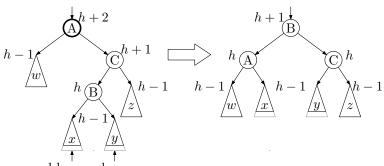


A single rotation won't fix this.

DOUBLE ROTATE!



doubleRotateLeft is shown. There's also a symmetric doubleRotateRight.

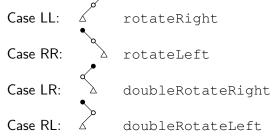


insert occurred here or here

Either x or y increased to height h-1 after insert. After rotation, subtree's height is the same as before insert. So height of ancestors doesn't change.

Insert Algorithm

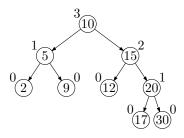
- 1. Find location for new key.
- 2. Add new leaf node with new key.
- 3. Go up tree from new leaf searching for imbalance.
- 4. At lowest unbalanced ancestor:



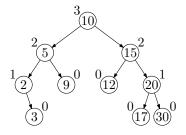
The case names are the first two steps on the path from the unbalanced ancestor to the new leaf.

Insert: No Imbalance

Insert(3)

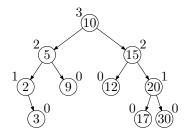


Insert: No Imbalance

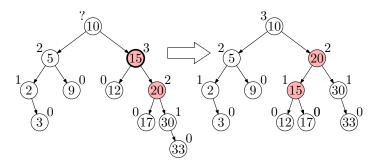


Insert: Imbalance Case RR

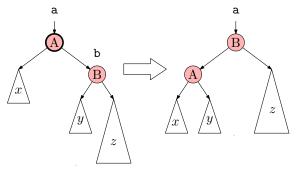
Insert(33)



Case RR: rotateLeft



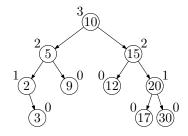
Single Rotation Code



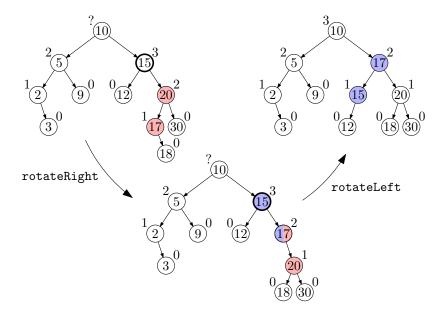
```
void rotateLeft(Node *&a) {
  Node* b = a->right;
  a->right = b->left;
  b->left = a;
  updateHeight(a);
  updateHeight(b);
  a = b;
}
```

Insert: Imbalance Case RL

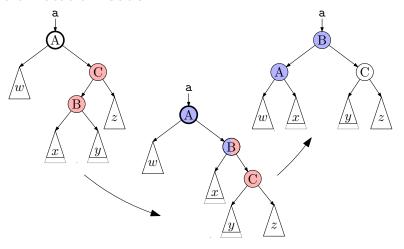
Insert(18)



Case RL: doubleRotateLeft



Double Rotation Code



```
void doubleRotateLeft(Node *&a) {
  rotateRight(a->right);
  rotateLeft(a);
}
```

Delete

- 1. Delete as for general binary search tree. (This way we reduce the problem to deleting a node with 0 or 1 child.)
- 2. Go up tree from deleted node searching for imbalance (and fixing heights).
- 3. Fix all unbalanced ancestors (bottom-up).



Thinking about AVL trees

Observations

- ▷ Binary search trees that allow only slight imbalance.
- \triangleright Worst-case $O(\log n)$ time for find, insert, and delete.
- ▷ Elements (even siblings) may be scattered in memory.

Realities

▷ For large data sets, disk accesses dominate runtime.

Could we have perfect balance if we relax binary tree restriction?