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Unit Outline

▷ Binary search trees

▷ Balance implies shallow (shallow is good)

▷ How to achieve balance

▷ Single and double rotations

▷ AVL tree implementation



Learning Goals

▷ Compare and contrast balanced/unbalanced trees.

▷ Describe and apply rotation to a BST to achieve a balanced
tree.

▷ Recognize balanced binary search trees (among other tree
types you recognize, e.g., heaps, general binary trees, general
BSTs).



Dictionary ADT Implementations

Worst Case Runtime:

insert find delete (after find)

Linked list
Unsorted array
Sorted array
Hash table



Binary Search in a Sorted List
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int bSearch(int A[], int key, int i, int j) {
if(j < i) return -1;
int m = (i + j) / 2;
if(key < A[m])
return bSearch(A, key, i, m-1);

else if(key > A[m])
return bSearch(A, key, m+1, j);

else return m;
}



Binary Search Tree as Dictionary Data Structure
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Binary tree property

▷ each node has ≤ 2 children

Search tree property

▷ all keys in left subtree smaller than node’s key

▷ all keys in right subtree larger than node’s key

Result: easy to find any given key



In-, Pre-, Post-Order Traversal
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In-order: 2, 5, 7, 9, 10, 15, 17, 20, 30

Pre-order:

Post-order:



Beauty is Only O(log n) Deep

Binary Search Trees are fast if they’re shallow.
Know any shallow trees?

▷ perfectly complete

▷ almost complete (except the last level, like a heap)

▷ anything else?

What matters here?

Siblings should have about the same height.
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Balance
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balance(x) = height(x.left) − height(x.right)
height(NULL) = −1.
If for all nodes x,

▷ balance(x) = 0 then perfectly balanced.

▷ |balance(x)| is small then balanced enough.

▷ −1 ≤ balance(x) ≤ 1 then tree height ≤ c lg n where c < 2.



AVL (Adelson-Velsky and Landis) Tree
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Binary tree property

▷ each node has ≤ 2 children

Search tree property

▷ all keys in left subtree smaller than node’s key

▷ all keys in right subtree larger than node’s key

Balance property

▷ For all nodes x, −1 ≤ balance(x) ≤ 1

Result: height is Θ(log n).



Is this an AVL tree?
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An AVL Tree
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How Do We Stay Balanced?

Suppose we start with a balanced search tree (an AVL tree).
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It’s no longer an AVL tree. What can we do?

ROTATE!
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Rotation
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Time Complexity of Rotation

▷ O(1)

▷ O(lg n)

▷ O(n)

▷ O(n lg n)

▷ O(n2)

▷ none of the above



Single Rotation
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Single Rotation

rotateRight is shown. There’s also a symmetric rotateLeft.
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After rotation, subtree’s height is the same as before insert.
So heights of ancestors don’t change.



Double Rotation
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A single rotation won’t fix this.

DOUBLE ROTATE!



Double Rotation
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Double Rotation
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Double Rotation

doubleRotateLeft is shown. There’s also a symmetric
doubleRotateRight.

insert occurred here or here
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Either x or y increased to height h− 1 after insert.
After rotation, subtree’s height is the same as before insert.
So height of ancestors doesn’t change.



Insert Algorithm

1. Find location for new key.

2. Add new leaf node with new key.

3. Go up tree from new leaf searching for imbalance.

4. At lowest unbalanced ancestor:

Case LL: rotateRight

Case RR: rotateLeft

Case LR: doubleRotateRight

Case RL: doubleRotateLeft
The case names are the first two steps on the path from the
unbalanced ancestor to the new leaf.



Insert: No Imbalance

Insert(3)
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Insert: Imbalance Case RR

Insert(33)

129

5

20

15

10

30

2

3

2

1 0

2

0 1

0
17

0
3

0



Case RR: rotateLeft
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Single Rotation Code
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void rotateLeft(Node *&a) {
Node* b = a->right;
a->right = b->left;
b->left = a;
updateHeight(a);
updateHeight(b);
a = b;

}



Insert: Imbalance Case RL

Insert(18)
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Case RL: doubleRotateLeft

129

5

20

15

10

30

2

?

2

1 0

3

0 2

0
17

1
3
0

18
0

12

9

5

20

10

30

2

3

2

1 0

2

1 1

0
3
0 0

15

129

5

20

15

10

2

?

2

1 0

3

0 2

1
3
0

30
0

18
0

17

17

18
0

rotateRight
rotateLeft



Double Rotation Code
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void doubleRotateLeft(Node *&a) {
rotateRight(a->right);
rotateLeft(a);

}



Delete

1. Delete as for general binary search tree. (This way we reduce
the problem to deleting a node with 0 or 1 child.)

2. Go up tree from deleted node searching for imbalance (and
fixing heights).

3. Fix all unbalanced ancestors (bottom-up).
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Thinking about AVL trees

Observations

▷ Binary search trees that allow only slight imbalance.

▷ Worst-case O(log n) time for find, insert, and delete.

▷ Elements (even siblings) may be scattered in memory.

Realities

▷ For large data sets, disk accesses dominate runtime.

Could we have perfect balance if we relax binary tree restriction?


