
Unit #6: Hash functions and
the Pigeonhole principle

CPSC 221: Algorithms and Data Structures

Lars Kotthoff1

larsko@cs.ubc.ca

1With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and
Kim Voll.

Unit Outline

▷ Constant-Time Dictionaries?

▷ Hash Table Outline

▷ Hash Functions

▷ Collisions and the Pigeonhole Principle
▷ Collision Resolution:

▷ Separate Chaining
▷ Open Addressing

Learning Goals

▷ Provide examples of the types of problems that can benefit
from a hash data structure.

▷ Identify the types of search problems that do not benefit from
hashing (e.g. range searching) and explain why.

▷ Evaluate collision resolution policies.

▷ Compare and contrast open addressing and chaining.

▷ Describe the conditions under which find using a hash table
takes Ω(n) time.

▷ Insert, delete, and find using various open addressing
and chaining schemes.

▷ Define various forms of the pigeonhole principle; recognize and
solve the specific types of counting and hashing problems to
which they apply.

Reminder: Dictionary ADT

Dictionary operations

▷ create

▷ destroy

▷ insert

▷ find

▷ delete

key value

Multics MULTiplexed Information
and Computing Service

Unics single-user Multics
Unix multi-user Unics
GNU GNU’s Not Unix

▷ insert(Linux, Linus Torvald’s Unix)

▷ find(Unix)

Stores values associated with user-specified keys

▷ values may be any type

▷ keys must be comparable

Implementations so far

Worst-case runtimes

insert delete find

Unsorted list O(1) Θ(n) Θ(n)

Balanced Trees Θ(log n) Θ(log n) Θ(log n)

Special case: keys in
{0, 1, . . . ,m− 1} O(1) O(1) O(1)

Can we get O(1) insert/find/delete for any key type?

Implementations so far

Worst-case runtimes

insert delete find

Unsorted list O(1) Θ(n) Θ(n)

Balanced Trees Θ(log n) Θ(log n) Θ(log n)

Special case: keys in
{0, 1, . . . ,m− 1} O(1) O(1) O(1)

Can we get O(1) insert/find/delete for any key type?

Hash Table Goal

We can do:

a[2]=“GNU’s Not Unix”

0

1

2

3

m− 1

GNU’s Not Unix

We want to do:

a[“GNU”]=“GNU’s Not Unix”

Multics

Linux

GNU

Unix

Unics

GNU’s Not Unix

Hash table approach

Use a hash function to map keys to indices.

Multics

Linux

GNU

Unix

Unics

GNU’s Not Unix

0

1

2

3

m− 1

hash function

hash tablekeys

hash(“GNU”) = 2

Collisions

A collision occurs when two different keys x and y map to the
same index, hash(x) = hash(y).

Multics

Linux

GNU

Unix

Unics

GNU’s Not Unix

0

1

2

3

m− 1

hash function

Mac OS X

hash table

Can we prevent collisions?

Hash table: find (first try)

Value &find(Key &key) {
int index = hash(key) % m;
return HashTable[index];

}

What should the hash function, hash, be?

What should the table size, m, be?

What do we do about collisions?

Good hash function properties

Using knowledge of the kind and number of keys to be stored, we
choose our hash function so that it is:

▷ fast to compute, and

▷ causes few collisions (we hope).

Numeric keys We might use hash(x) = x mod m with m a prime
number larger than the number of keys we expect to store.
Why a prime number?

0

1

2

3

4

5

6
m = 7

Example: hash(x) = x mod 7
insert(4)
insert(17)
find(12)
insert(9)
delete(17)

Hashing strings

One option

Let string s = s0s1s2 . . . sk−1 where each si is an 8-bit character.

hash(s) = s0 + 256s1 + 2562s2 + · · ·+ 256k−1sk−1

Hash function treats string an a base 256 number.

Problems

▷ hash(“really, really big”) = well. . . something really, really big

▷ hash(“anything”) mod 256 = hash(“anything else”) mod 256

Hashing strings

One option

Let string s = s0s1s2 . . . sk−1 where each si is an 8-bit character.

hash(s) = s0 + 256s1 + 2562s2 + · · ·+ 256k−1sk−1

Hash function treats string an a base 256 number.

Problems

▷ hash(“really, really big”) = well. . . something really, really big

▷ hash(“anything”) mod 256 = hash(“anything else”) mod 256

Hashing strings with Horner’s Rule

int hash(string s) {
int h = 0;
for(i = s.length() - 1; i >= 0; i--) {
h = (256*h + s[i]) % m;

}
return h;

}

Compare that to the hash function from yacc:

#define TABLE_SIZE 1024 // must be power of 2
int hash(char *s) {
int h = *s++;
while(*s) h = (31 * h + *s++) & (TABLE_SIZE

- 1);
return h;

}

What’s different?

Hash Function Summary

Goals of a hash function

▷ Fast to compute

▷ Cause few collisions

Sample hash functions

▷ For numeric keys x, hash(x) = x mod m

▷ hash(s) = string as base 256 number mod m

▷ Multiplicative hash: hash(k) = ⌊m · frac(ka)⌋ where frac(x) is
the fractional part of x and a = 0.6180339887 (for example).

▷ Universal hash: hash(k) = (a · k + b) mod m where a and b
were chosen at random from [1,m− 1] and m prime.

▷ Cryptographically secure hash (such as SHA-1)

Universal hash functions

A set H of hash functions is universal if the probability that
hash(x) = hash(y) is at most 1/m when hash() is chosen at
random from H.

Example: Suppose m = 2b and keys are r bits long. Choose a
random 0/1 matrix A of size b× r. hash(x) = A · x.

A · x =

1 0 0 0 0
0 1 1 0 1
1 1 0 1 1

 ·


0
1
0
1
0

 =

01
0

 = hash(x)

General form of hash functions

1. Map key to a sequence of bytes.
▷ Two equal sequences iff two equal keys.
▷ Easy. The key probably is a sequence of bytes already.

2. Map sequence of bytes to an integer x.
▷ Changing bytes should cause apparently random changes to x.
▷ Hard. May be expensive. Cryptographic hash.

3. Map x to a table index using x mod m.

Collisions

Pigeonhole principle

If more than m pigeons fly into m pigeonholes then some
pigeonhole contains at least two pigeons.

Corollary

If we hash n > m keys into m slots, two keys will collide (but may
already with fewer keys!).

The Pigeonhole Principle

Let X and Y be finite sets where |X| > |Y |.
If f : X → Y , then f(x1) = f(x2) for some x1 ̸= x2.

X

Y

The Pigeonhole Principle: Example #0

Image from Wikipedia.

The Pigeonhole Principle: Example #1

Suppose we have 5 colours of Halloween candy, and that there’s
lots of candy in a bag. How many pieces of candy do we have to
pull out of the bag if we want to be sure to get 2 of the same
colour?

a. 2

b. 4

c. 6

d. 8

e. None of these

The Pigeonhole Principle: Example #2

If there are 1000 pieces of each colour, how many do we need to
pull to guarantee that we’ll get 2 purple pieces of candy (assuming
that purple is one of the 5 colours)?

a. 2

b. 4

c. 6

d. 8

e. None of these

The Pigeonhole Principle: Example #3

If 5 points are placed in a 6cm x 8cm rectangle, argue that there
are two points that are not more than 5 cm apart.

Hint: How long is
this diagonal?

The Pigeonhole Principle: Example #4

Consider n+ 1 distinct positive integers, each ≤ 2n. Show that
one of them must divide one of the others.

For example, if n = 4, consider the following sets:

{1, 2, 3, 7, 8} {2, 3, 4, 7, 8} {2, 3, 5, 7, 8}

Hint: Any integer can be written as 2k · q where k is an integer
and q is odd. E.g., 129 = 20 · 129; 60 = 22 · 15.

General Pigeonhole Principle

Let X and Y be finite sets with |X| = n, |Y | = m, and
k = ⌈n/m⌉.
If f : X → Y then there exist k distinct values x1, x2, . . . , xk ∈ X
such that f(x1) = f(x2) = · · · = f(xk).

Informally: If n pigeons fly into m holes, at least one hole contains
at least k = ⌈n/m⌉ pigeons.

Proof: Assume there’s no such hole. Then there are at most
(⌈n/m⌉ − 1)m < (n/m)m = n pigeons.

Pigeonhole Principle: Example #5

Show that in a group of 6 people, where each two people are either
friends or enemies (i.e. they can’t be “neutral”), there must be
either 3 pairwise friends or 3 pairwise enemies.

Proof: Let A be one of the 6 people. A has at least 3 friends or at
least 3 enemies by the general pigeonhole principle because
⌈5/2⌉ = 3. (5 people into 2 holes (friend/enemy).)
Suppose A has ≥ 3 friends (the enemies case is similar) and call
three of them B, C, and D.
If (B,C) or (C,D) or (B,D) are friends then we’re done because
those two friends with A forms a triple of friends.
Otherwise (B,C) and (C,D) and (B,D) are enemies and BCD
forms a triple of enemies.

Collision Resolution

Birthday Paradox

With probability > , two people, in a room of 23, have the
same birthday.

General birthday paradox

Even if we randomly hash only
√
2m keys into m slots, we get a

collision with probability > .

Collision
Unless we know all the keys in advance and design a perfect hash
function, we must handle collisions.

What do we do when two keys hash to the same entry?

▷ separate chaining: store multiple items in each entry

▷ open addressing: pick a next entry to try

Hashing with Chaining
Store multiple items in each entry.

How?

▷ Common choice is an unordered linked list
(a chain).

▷ Could use any dictionary ADT
implementation.

Result

▷ Can hash more than m items into a table
of size m.

▷ Performance depends on the length of the
chains.

▷ Memory is allocated on each insertion.

0

1

2

3

4

5

6

A D

E B

C

hash(A) = hash(D) = 1
hash(E) = hash(B) = 3

Hash: Chaining Code

Dictionary &findSlot(const Key &k) {
return table[hash(k) % table.size];

}

void insert(const Key &k, const Value &v) {
findSlot(k).insert(k, v);

}

void delete(const Key &k) {
findSlot(k).delete(k);

}

Value &find(const Key &k) {
return findSlot(k).find(k);

}

Access time for Chaining

Load Factor

α =
hashed items

table size
=

n

m

Assume we have a uniform hash function (every item hashes to a
uniformly distributed slot).

Search cost
On average,

▷ an unsuccessful search examines α items.

▷ a successful search examines 1 + n−1
2m = 1 + α

2 − α
2n items.

We want the load factor to be small.

Open Addressing

Allow only one item in each slot. The hash function specifies a
sequence of slots to try.

Insert If the first slot is occupied, try the next,
then the next, . . . until an empty slot is found.

Find If the first slot doesn’t match, try the
next, then the next, . . . until a match (found)
or an empty slot (not found).

Result

▷ Cannot hash more than m items into a
table of size m.

▷ Hash table memory allocated once.

▷ Performance depends on number of tries.

0

1

2

3

4

5

6

A

D

E

B

C

Probe Sequence

The sequence of slots we examine when inserting (and finding) a
key.

A probe sequence is a function, h(k, i), that maps a key k and an
integer i to a table index.
Given key k:

▷ We first examine slot h(k, 0).

▷ If it’s full, we examine slot h(k, 1).

▷ If it’s full, we examine slot h(k, 2).

▷ And so on. . .

If all the slots in the probe sequence are full, we fail to insert the
key.
The time to insert is the number of slots we must examine before
finding an empty slot.

Linear probing: h(k, i) = (hash(k) + i) mod m

Entry *find(const Key &k) {
int p = hash(k) % size;
for(int i=1; i<=size; i++) {
Entry *entry = &(table[p]);
if(entry->isEmpty()) return NULL;
if(entry->key == k) return entry;
p = (p + 1) % size;

}
return NULL;

}

Linear probing example

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

insert(76) insert(93) insert(40) insert(47) insert(10) insert(55)

76%7 = 6 93%7 = 2 40%7 = 5 47%7 = 5 10%7 = 3 55%7 = 6

9393 93 93 93

40 40 40 40

47 47 47

10 10

55

Access time for linear probing

If α < 1, linear probing will find an empty slot.

Search cost
On average,

▷ an unsuccessful search probes ≈ 1
2

(
1 + 1

(1−α)2

)
slots.

▷ a successful search probes ≈ 1
2

(
1 + 1

1−α

)
slots.

Linear probing suffers from primary clustering: creation of long
consecutive sequences of filled slots. (They tend to get longer and
merge.)

Performance quickly degrades for α > 1/2.

Quadratic probing: h(k, i) = (hash(k) + i2) mod m

Entry *find(const Key &k) {
int p = hash(k) % size;
for(int i=1; i<=size; i++) {
Entry *entry = &(table[p]);
if(entry->isEmpty()) return NULL;
if(entry->key == k) return entry;
p = (p + 2*i - 1) % size;

}
return NULL;

}

Quadratic probing example

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

insert(76) insert(40) insert(48) insert(5) insert(55)

76%7 = 6 40%7 = 5 48%7 = 6 5%7 = 5 55%7 = 6

48

40

5 5

40 40 40

48 48

55

Quadratic probing example

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

insert(76) insert(93) insert(40) insert(35) insert(47)

76%7 = 6 93%7 = 2 40%7 = 5 35%7 = 0 47%7 = 5

93

40 40 40

93 93 93

35 35

fail

Quadratic probing: First ⌈m/2⌉ probes are distinct

Claim: If m is prime, the first ⌈m/2⌉ probes are distinct.
Proof: (by contradiction) Suppose for some 0 ≤ i < j ≤ ⌊m/2⌋,

(hash(k) + i2) mod m = (hash(k) + j2) mod m

⇔ i2 mod m = j2 mod m

⇔ (i2 − j2) mod m = 0

⇔ (i− j)(i+ j) mod m = 0

Since m is prime, one of (i− j) and (i+ j) must be divisible by m.
But 0 < i+ j < m and −⌊m/2⌋ ≤ i− j < 0 because
0 ≤ i < j ≤ ⌊m/2⌋.

Result
If table size m is prime and there are < ⌈m/2⌉ full slots (i.e.
α < 1/2), then quadratic probing will find an empty slot.

Quadratic probing: Only ⌈m/2⌉ probes are distinct
Claim: For any j ∈ {⌈m/2⌉, ⌈m/2⌉+ 1, . . . ,m− 1}, there is an
i ∈ {1, 2, . . . , ⌊m/2⌋} such that i2 mod m = j2 mod m.

Proof: Let i = m− j.

i2 = (m− j)2 = m2 − 2mj + j2

→ i2 mod m = j2 mod m

For example: m = 7

hash(k) + 02 = hash(k) + 0 mod 7

hash(k) + 12 = hash(k) + 1 mod 7

hash(k) + 22 = hash(k) + 4 mod 7

hash(k) + 32 = hash(k) + 2 mod 7

hash(k) + 42 = hash(k) + 2 mod 7

hash(k) + 52 = hash(k) + 4 mod 7

hash(k) + 62 = hash(k) + 1 mod 7

Access time for quadratic probing

Only the first ⌈m/2⌉ slots in a quadratic probe sequence are
distinct — the rest are duplicates.

Quadratic probing doesn’t suffer from primary clustering.

Quadratic probing suffers from secondary clustering: all items
that initially hash to the same slot follow that same probe
sequence.

How could we avoid that?

Double hashing: h(k, i) = (hash(k) + i · hash2(k)) mod m

Entry *find(const Key &k) {
int p = hash(k) % size, inc = hash2(k);
for(int i=1; i<=size; i++) {
Entry *entry = &(table[p]);
if(entry->isEmpty()) return NULL;
if(entry->key == k) return entry;
p = (p + inc) % size;

}
return NULL;

}

Choosing hash2(k)

hash2(k) should:

▷ be quick to evaluate

▷ differ from hash(k)

▷ never be 0 (mod m)

We’ll use:
hash2(k) = r − (k mod r)

for a prime number r < m.

Double hashing example

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

0

1

2

3

4

5

6 76

insert(76) insert(93) insert(40) insert(47) insert(10) insert(55)

76%7 = 6 93%7 = 2 40%7 = 5 47%7 = 5 10%7 = 3 55%7 = 6

9393 93 93 93

40 40 40 40

47 47 47

10 10

55

5− (47%5) = 3 5− (55%5) = 5

Access time for double hashing

For α < 1, double hashing will find an empty slot (assuming m and
hash2 are well-chosen).

Search cost
Appears to approach uniform hashing:

▷ an unsuccessful search probes 1
1−α slots.

▷ a successful search probes 1
α ln 1

1−α slots.

No primary or secondary clustering.

One extra hash calculation.

Deletion in Open Addressing
Example: hash(k) = k mod 7.

0

1

2

3

4

5

6

0

1

2

3

4

5

6

delete(2)

0

1

2

7

0

1

7

find(7)

end of search?!

not here

not here

Put a tombstone in the slot.

Find Treat tombstone as an occupied slot.
Insert Treat tombstone as an empty slot.
However, you may need to Find before Insert if you want to avoid
duplicate keys (which you do).

Deletion in Open Addressing
Example: hash(k) = k mod 7.

0

1

2

3

4

5

6

0

1

2

3

4

5

6

delete(2)

0

1

2

7

0

1

7

find(7)

keep going

not here

not here

here!

Put a tombstone in the slot.

Find Treat tombstone as an occupied slot.
Insert Treat tombstone as an empty slot.
However, you may need to Find before Insert if you want to avoid
duplicate keys (which you do).

The Squished Pigeon Principle

An insert using open addressing cannot succeed with a load factor
of 1 or more.

An insert using open addressing with quadratic probing may not
succeed with a load factor > 1/2.

Whether you use chaining or open addressing, large load factors
lead to poor performance!

How can we relieve the pressure on the pigeons?

Hint: Think resizable arrays!

Rehashing

When the load factor gets “too large” (α > some constant
threshold), rehash all the elements into a new, larger table:

▷ takes Θ(n) time, but amortized O(1) as long as we double
table size on the resize

▷ spreads keys back out, may drastically improve performance

▷ gives us a chance to change the hash function

▷ avoids failure for open addressing techniques

▷ allows arbitrarily large tables starting from a small table

▷ clears out tombstones

