
Unit #3: Priority Queues
CPSC 221: Algorithms and Data Structures

Lars Kotthoff1

larsko@cs.ubc.ca

1With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and
Kim Voll.



Unit Outline

▷ Rooted Trees, briefly

▷ Priority Queue ADT

▷ Heaps

▷ Implementing Priority Queue ADT
▷ Focus on Create: Heapify
▷ Brief introduction to d-Heaps



Learning Goals

▷ Provide examples of appropriate applications for priority
queues and heaps

▷ Manipulate data in heaps

▷ Describe and apply the Heapify algorithm, and analyze its
complexity



Rooted Trees

▷ Family Trees

▷ Organization Charts

▷ Classification trees (a.k.a. keys)

▷ What kind of flower is this?
▷ Is this mushroom poisonous?

▷ File directory structure

▷ folders, subfolders in Windows
▷ directories, subdirectories in UNIX

▷ Non-recursive call graphs



Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

root:

leaf:

child:

parent:

sibling:

ancestor:

descendent:

subtree:



Tree Terminology Reference

H

MLKJ

D E

B

G

I

C

A

F

N

root: the single node with no parent

leaf: a node with no children

child: a node pointed to by me

parent: the node that points to me

sibling: another child of my parent

ancestor: my parent or my parent’s ancestor

descendent: my child or my child’s descendent

subtree: a node and its descendents



More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

depth: Number of edges on path from root to node

depth of H?



Even More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

height: Number of edges on longest path from node to descendent
or, for whole tree, from root to leaf

height of tree?

height of G?



Yet Even More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

(downward) degree: Number of children of a node

degree of B?



I Can’t Believe It’s Still Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

preorder traversal: running through all the nodes in the tree,
starting with the parent, then all the children → breadth-first
search
postorder traversal: run through all the nodes starting with the
children and then the parents → depth-first search
preorder traversal for G?



One More Tree Terminology Slide And I Am Literally
Going to Die

LKJIH

D E

B

F G

C

Abinary: each node has degree at most 2

d-ary: degree at most d

branching factor: maximum degree

complete: as many nodes as possible for its height

nearly complete: complete plus some nodes on the left at the
bottom



Recursive Trees

A tree is either:

▷ the empty tree, or

▷ a root node and ordered list of subtrees.



Longest Path

Find the longest undirected path in a tree.

r



Longest Path Example

H

MLKJ

D E

B

G

I

C

A

F

N



Back to Queues

▷ Applications
▷ ordering CPU jobs
▷ simulating events
▷ picking the next search site

▷ But we don’t want FIFO. . .
▷ short jobs should go first
▷ earliest (simulated time) events should go first
▷ most promising sites should be searched first



Priority Queue ADT

ant 8
bee 2

cat 4

dog 14

emu 6
insert deleteMin

▷ Priority Queue operations
▷ create
▷ destroy
▷ insert
▷ deleteMin
▷ is empty

▷ Priority Queue property: For two elements in the queue, x
and y, if x has a lower priority value than y, x will be deleted
before y.



Applications of the Priority Queue

▷ Hold jobs for a printer in order of length

▷ Store packets on network routers in order of urgency

▷ Simulate events

▷ Select symbols for compression

▷ Sort numbers

▷ Anything greedy: an algorithm that makes the “locally best
choice” at each step



Priority Queue Data Structures

▷ Unsorted list

▷ insert time:

▷ deleteMin time:

▷ Sorted list

▷ insert time:

▷ deleteMin time:



Binary Heap Priority Queue Data Structure

111412913

7 6

4

10 8

5

2

Heap-order property: parent’s key ≤ children’s keys.

▷ minimum is always at the top

Structure property: “nearly complete tree”

▷ depth is always O(log n)

▷ next open location always known

WARNING: This has NO SIMILARITY to the “heap” you hear
about when people say “things you create with new go on the
heap”.



Nifty Storage Trick

111412913

7 6

4

10 8

5

2
0

1 2

3 4 5 6

7 8 9 10 11

Navigation using indices:

▷ left child(i) =

▷ right child(i) =

▷ parent(i) =

▷ root =

▷ next free position =

0 1 2 3 4 5 6 7 8 9 10 11 12

2 4 5 7 6 10 8 13 9 12 14 11



DeleteMin

111412913

7 6

4

10 8

5

2

111412913

7 6

4

10 8

5

2

Invariants violated! No longer “nearly complete”.



Swap Down

Move last element to root then swap it down to its proper position.

1412913

7 6

4

10 8

5

11

1412913

7 6

4

10 8

5

1412913

7

6

4

10 8

5

11

1412913

7

6

4

10 8

5

11

11



DeleteMin Code

int deleteMin() {
assert(!isEmpty());
int returnVal = Heap[0];
Heap[0] = Heap[n-1];
n--;
swapDown(0);
return returnVal;

}

Runtime:

void swapDown(int i) {
int s = i;
int left = i * 2 + 1;
int right = left + 1;
if(left < n &&

Heap[left] < Heap[s])
s = left;

if(right < n &&
Heap[right] < Heap[s])

s = right;
if(s != i) {
int tmp = Heap[i];
Heap[i] = Heap[s];
Heap[s] = tmp;
swapDown(s);

}
}



Insert

11

1412913

7

6

4

10 8

5

31412913

7

6

4

10 8

5insert(3)

11

Invariant violated! Child has smaller key than parent.



Swap Up

Put new element last then swap it up to its proper position.

1412913

7 10 8

5

1412913

7

4

10

8

5

1412913

7

6

4

10

85 11

1412913

7

6 4

8511

3

4

6

11

6

11 3

3

10

3



Insert Code

void insert(int x) {
assert(!isFull());
Heap[n] = x;
n++;
swapUp(n-1);

}

void swapUp(int i) {
if(i == 0) return;
int p = (i - 1)/2;
if(Heap[i] < Heap[p]) {

int tmp = Heap[i];
Heap[i] = Heap[p];
Heap[p] = tmp;
swapUp(p);

}
}

Runtime:



Closer Look at Creating Heaps

7 6

4

10

5

2

9, 1, 11, 8, 3 insert

To create a heap given a list of items:

1. Create an empty heap.

2. For each item: insert into heap.

Time complexity?

a. O(log n)

b. O(n)

c. O(n log n)

d. O(n2)

e. None of these



Heapify: Create a Heap from a non-Heap Array

1. Start with the input array.
12 5 11 3 10 6 9 4 8 1 7 2

27184

3 10

5

6 9

11

12

Invariant violated!

0

1 2

3 4 5 6

7 8 9 10 11

Where can the order invariant be violated?

a. Anywhere
b. Non-leaves
c. Non-roots

2. Fix the heap-order property bottom up. Use swapDown.

for(i=n/2-1; i >=0; i--) swapDown(i);



Heapify: Create a Heap from a non-Heap Array

1. Start with the input array.
12 5 11 3 10 6 9 4 8 1 7 2

27184

3 10

5

6 9

11

12

Invariant violated!

0

1 2

3 4 5 6

7 8 9 10 11

Where can the order invariant be violated?

a. Anywhere
b. Non-leaves
c. Non-roots

2. Fix the heap-order property bottom up. Use swapDown.

for(i=n/2-1; i >=0; i--) swapDown(i);



Heapify Example

7184

3 10

5

6 9

11

12

2

7184

3 10

5

9

11

12

2 6

2

84

3

5

9

11

12

6

2

84

3

5

9

11

12

67

1

10 7

1

10

0

1 2

3 4 5 6

7 8 9 10 11



Heapify Example

0

1 2

3 4 5 6

7 8 9 10 11

2

84

3

5

9

11

12

6

7

1

10

2

8

4

3

9

1112

6

7

5

10

1

2

84

3 9

11

12

6

7

5

10

1



Heapify Runtime

swapDown on a heap of height H takes at most steps.

2

8

4

3

9

1112

6

7

5

10

1
0

1 2

3 4 5 6

7 8 9 10 11

Let H be the height of the heap.

swapDown is called once on heap of height H
≤ 2 times on heap of height H − 1
≤ 4 times on heap of height H − 2
...
≤ 2H−1 times on heap of height 1

Total # steps ≤
H∑

h=1

h2H−h = 2H
H∑

h=1

h

2h
≤ 2H+1 ∈ O(n)



Heapify Runtime: Charging Scheme

$ $

$ $ $ $

$$$$$$$$

Possible violations. How much time to fix them?
Place a dollar on each edge of the heap. One dollar pays for one
step of swapDown. By induction, we can show that when
swapDown is called on a node v, both children of v have a path
(the rightmost path) to a leaf that is uncharged. The edges on the
left child’s rightmost path plus the edge to the left child pay for
the steps of swapDown at v. The edges on the right child’s
rightmost path plus the edge to the right child form the uncharged
path available to the parent of v.



Thinking about Binary Heaps

Observations

▷ finding a child/parent index is a multiply/divide by two

▷ deleteMin and insert access far-apart array locations

▷ deleteMin accesses all children of visited nodes

▷ insert accesses only parent of visited nodes

▷ insert is at least as common as deleteMin

Realities

▷ division and multiplication by powers of two are fast

▷ far-apart array accesses ruin cache performance

▷ with huge data sets, disk I/O dominates



Solution: d-Heaps

Nearly complete d-ary trees (representable by array) with
Heap-order property.

1

3 7 2

4 8 5 12 11 10 6 9

1 3 7 2 4 8 5 12 11 10 6 9

0

1 2 3

0 1 2 3 4 5 6 7 8 9 10 11

Good choices for d:

▷ fit one set of children on a memory page/disk block

▷ fit one set of children in a cache line

▷ optimize performance based on ratio of inserts/deleteMins

▷ make d a power of two for efficiency



d-Heap Navigation

▷ jth-child(i) =

▷ parent(i) =

▷ root =

▷ next free position =

1

3 7 2

4 8 5 12 11 10 6 9

1 3 7 2 4 8 5 12 11 10 6 9

0

1 2 3

0 1 2 3 4 5 6 7 8 9 10 11


