Unit #2: Complexity Theory and Asymptotic Analysis CPSC 221: Algorithms and Data Structures

Lars Kotthoff¹ larsko@cs.ubc.ca

¹With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and Kim Voll.

Runtime Example #8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence of characters that appears, in order, in both strings.

Example:

A = search me B = insane method

A longest common subsequence is "same" (so is "seme")

Applications:

DNA sequencing, revision control systems, diff,

Example #9

Find a tight bound on $T(n) = \lg(n!)$.

Aside: Who Cares About $\Omega(\lg(n!))$?

Can You Beat $O(n \log n)$ Sort?

Chew these over:

- \triangleright How many values can you represent with n bits?
- ▷ Comparing two values (x < y) gives you one bit of information.
- ▷ There are n! possible ways to reorder a list. We could number them: 1, 2, ..., n!
- Sorting basically means choosing which of those reorderings/numbers you'll apply to your input.
- How many comparisons does it take to pick among n! numbers?

Asymptotic Analysis Summary

- Determine what is the input size
- ▷ Express the resources (time, memory, etc.) an algorithm requires as a function of input size
 - ▷ worst case
 - ▷ best case
 - ▷ average case
 - common case
- $\,\triangleright\,$ Use asymptotic notation, $O,\Omega,\Theta,$ to express the function simply

Problem Complexity

The **complexity of a problem** is the complexity of the best algorithm for the problem.

- We can sometimes prove a lower bound on a problem's complexity. To do so, we must show a lower bound on any possible algorithm.
- A correct algorithm establishes an upper bound on the problem's complexity.

Searching an unsorted list using comparisons takes $\Omega(n)$ time (lower bound).

Linear search takes O(n) time (matching upper bound).

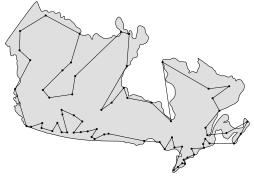
Sorting a list using comparisons takes $\Omega(n\log n)$ time (lower bound).

Mergesort takes $O(n \log n)$ time (matching upper bound).

Problem Complexity

Sorting: solvable in polynomial time, tractable Traveling Salesman Problem (TSP): In 1,290,319km, can I drive to all the cities in Canada, visiting each exactly once, and return home? www.math.uwaterloo.ca/tsp/

Checking a solution takes polynomial time. Current fastest way to find a solution takes exponential time in the worst case.



Are problems in NP really in P? \$1,000,000 prize

Problem Complexity

Searching and Sorting: P, tractable Traveling Salesman Problem: NP, intractable² Kolmogorov Complexity: Uncomputable

Kolmogorov Complexity of a string is the length of the shortest description of it.

Can't be computed. Pithy but hand-wavy proof: What's:

The smallest positive integer that cannot be described in fewer than fourteen words.

²Assuming $P \neq NP$.