Unit \#2: Complexity Theory and Asymptotic Analysis CPSC 221: Algorithms and Data Structures

Lars Kotthoff ${ }^{1}$
larsko@cs.ubc.ca

${ }^{1}$ With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and Kim Voll.

Runtime example \#6: Fibonacci

Recursive Fibonacci:
int fib(n)
if($\mathrm{n}==0$ or $\mathrm{n}==1$) return n
return fib $(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$
Recurrence relation: (lower bound)

$$
\begin{aligned}
& T(0) \geq b \\
& T(1) \geq b \\
& T(n) \geq T(n-1)+T(n-2)+c \quad \text { if } n>1
\end{aligned}
$$

Runtime example \#6: Fibonacci

Recursive Fibonacci:
int fib(n)
if($\mathrm{n}==0$ or $\mathrm{n}==1$) return n
return fib($\mathrm{n}-1$) $+\mathrm{fib}(\mathrm{n}-2)$
Recurrence relation: (lower bound)

$$
\begin{aligned}
& T(0) \geq b \\
& T(1) \geq b \\
& T(n) \geq T(n-1)+T(n-2)+c \quad \text { if } n>1
\end{aligned}
$$

Claim:

$$
T(n) \geq b \varphi^{n-1}
$$

where $\varphi=(1+\sqrt{5}) / 2$. Remember the formula for computing Fibonacci numbers?
Note: $\varphi^{2}=\varphi+1$.

Runtime example \#6: Fibonacci

Claim:

$$
T(n) \geq b \varphi^{n-1}
$$

Proof: (by induction on n)
Base case: $T(0) \geq b>b \varphi^{-1}$ and $T(1) \geq b=b \varphi^{0}$. Inductive hypothesis: Assume $T(n) \geq b \varphi^{n-1}$ for all $n \leq k$. Inductive step: Show true for $n=k+1$.

$$
\begin{aligned}
T(n) & \geq T(n-1)+T(n-2)+c \\
& \geq b \varphi^{n-2}+b \varphi^{n-3}+c \\
& =b \varphi^{n-3}(\varphi+1)+c \\
& =b \varphi^{n-3} \varphi^{2}+c \\
& \geq b \varphi^{n-1}
\end{aligned}
$$

$$
\geq b \varphi^{n-2}+b \varphi^{n-3}+c \quad \text { (by inductive hypothesis) }
$$

$T(n) \in$
Why? Same recursive call is made numerous times.

Example \#7: Learning from analysis

To avoid recursive calls
\triangleright store base case values in a table
\triangleright before calculating the value for n
\triangleright check if the value for n is in the table

- if so, return it
\triangleright if not, calculate it and store it in the table

This strategy is called memoization and is closely related to dynamic programming.

Example \#7: Learning from analysis

```
int fib(int n) {
    int F[n+1];
    F[0]=0; F[1]=1; F[2]=1;
    for(int i=3; i<=n; ++i) {
        F[i] = F[i-1] + F[i-2];
    }
    return F[n];
}
```

How much time does this version take?

Runtime Example \#8: Longest Common Subsequence

Problem: Given two strings $(A$ and $B)$, find the longest sequence of characters that appears, in order, in both strings.

Example:

$$
A=\text { search me } \quad B=\text { insane method }
$$

A longest common subsequence is "same" (so is "seme")
Applications:
DNA sequencing, revision control systems, diff,...

