Unit #2: Complexity Theory
and Asymptotic Analysis
CPSC 221: Algorithms and Data Structures

Lars Kotthoff!
larsko@cs.ubc.ca

With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and
Kim Voll.



Runtime example #6: Fibonacci

Recursive Fibonacci:

int fib (n)
if(n == 0 or n == 1) return n
return fib(n-1) + fib (n-2)

Recurrence relation: (lower bound)

=8
S e
VvV IV IV
St o

Tn—1)+T(n—-2)+c ifn>1



Runtime example #6: Fibonacci

Recursive Fibonacci:

int fib (n)
if(n == 0 or n == 1) return n
return fib(n-1) + fib (n-2)

Recurrence relation: (lower bound)

T(0)>b
T1)>b
T(n)>T(n—1)+T(n—-2)+c ifn>1

Claim:
T(n) > bp" !

where ¢ = (1 ++/5)/2. Remember the formula for computing
Fibonacci numbers?
Note: ¢? = ¢ + 1.



Runtime example #6: Fibonacci

Claim:
T(n) > bp"*

Proof: (by induction on n)

Base case: T'(0) > b > by~ and T(1) > b = by?.
Inductive hypothesis: Assume T'(n) > bp"~! for all n < k.
Inductive step: Show true for n = k + 1.

Tn)>T(n—1)4+T(n—-2)+c
> b2 4 b3 4 ¢ (by inductive hypothesis)
=bp" (o4 1)+ ¢
=bp" 3% ¢

T(n) €
Why? Same recursive call is made numerous times.



Example #7: Learning from analysis

To avoid recursive calls

> store base case values in a table
> before calculating the value for n

> check if the value for n is in the table
> if so, return it
> if not, calculate it and store it in the table

This strategy is called memoization and is closely related to
dynamic programming.



Example #7: Learning from analysis

int fib(int n) {
int F[n+1];

F[0]1=0; F[1l]=1; F[2]=1;
for (int i=3; i<=n; ++i) {

F[i] = F[i-1] + F[i-2];
}

return F[n];

How much time does this version take?



Runtime Example #8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence
of characters that appears, in order, in both strings.

Example:

A = search me B = insane method
A longest common subsequence is “same” (so is “seme”)

Applications:
DNA sequencing, revision control systems, diff, ...



