
Unit #2: Complexity Theory
and Asymptotic Analysis

CPSC 221: Algorithms and Data Structures

Lars Kotthoff1

larsko@cs.ubc.ca

1With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and
Kim Voll.



Unit Outline

▷ Brief proof reminder

▷ Algorithm Analysis: Counting steps

▷ Asymptotic Notation

▷ Runtime Examples

▷ Problem Complexity



Learning Goals

▷ Given code, write a formula that measures the number of
steps executed as a function of the size of the input.

▷ Use asymptotic notation to simplify functions and to express
relations between functions.

▷ Know the asymptotic relations between common functions.

▷ Understand why to use worst-case, best-case, or average-case
complexity measures.

▷ Give examples of tractable, intractable, and undecidable
problems.



Proof by . . .

▷ Counterexample

▷ show an example which does not fit with the theorem
▷ Thus, the theorem is false.

▷ Contradiction
▷ assume the opposite of the theorem
▷ derive a contradiction
▷ Thus, the theorem is true.

▷ Induction
▷ prove for a base case (e.g., n = 1)
▷ assume for all n ≤ k (for arbitrary k)
▷ prove for the next value (n = k + 1)
▷ Thus, the theorem is true.



Example: Proof by Induction (worked) 1/4

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its
decimal digits is divisible by 3.

Proof:
Let x1x2x3 . . . xn be the decimal digits of x.
Let the sum of its decimal digits be

S(x) =

n∑
i=1

xi

We’ll prove the stronger result:

S(x) mod 3 = x mod 3.

How do we use induction?



Example: Proof by Induction (worked) 2/4

Base Case:
Consider any number x with one (n = 1) digit (0-9).

S(x) =

n∑
i=1

xi = x1 = x.

So, it’s trivially true that S(x) mod 3 = x mod 3 when n = 1.



Example: Proof by Induction (worked) 3/4

Inductive hypothesis:
Assume for an arbitrary integer k > 0 that for any number x with
n ≤ k digits:

S(x) mod 3 = x mod 3.

Inductive step:
Consider a number x with n = k + 1 digits:

x = x1x2 . . . xkxk+1.

Let z be the number x1x2 . . . xk. It’s a k-digit number so the
inductive hypothesis applies:

S(z) mod 3 = z mod 3.



Example: Proof by Induction (worked) 4/4

Inductive step (continued):

x mod 3 = (10z + xk+1) mod 3 (x = 10z + xk+1)

= (9z + z + xk+1) mod 3

= (z + xk+1) mod 3 (9z is divisible by 3)

= (S(z) + xk+1) mod 3 (induction hypothesis)

= (x1 + x2 + · · ·+ xk + xk+1) mod 3

= S(x) mod 3

QED (quod erat demonstrandum:“what was to be demonstrated”)



A Task to Solve and Analyze

Find a student’s name in a class given her student ID



Analysis of Algorithms

▷ Analysis of an algorithm gives insight into
▷ how long the program runs (time complexity or runtime) and
▷ how much memory it uses (space complexity).

▷ Analysis can provide insight into alternative algorithms

▷ Input size is indicated by a non-negative integer n (sometimes
there are multiple measures of an input’s size)

▷ Running time is a real-valued function of n such as:
▷ T (n) = 4n+ 5
▷ T (n) = 0.5n log n− 2n+ 7
▷ T (n) = 2n + n3 + 3n



Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

n = 10

100 1,000 10,000 105 106 109

log n 1ps

2ps 3ps 4ps 5ps 6ps 9ps

n 10ps

100ps 1ns 10ns 100ns 1µs 1ms

n log n 10ps

200ps 3ns 40ns 500ns 6µs 9ms

n2 100ps

10ns 1µs 100µs 10ms 1s 1week

2n 1ns

1Es 10289s

Exasecond(Es) = 32 billion years
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Analyzing Code

// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
if array[i] == key
return i

return -1

1) What’s the input size, n?



Analyzing Code

// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
if array[i] == key
return i

return -1

2) Should we assume a worst-case, best-case, or average-case input
of size n?



Analyzing Code

// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
if array[i] == key
return i

return -1

3) How many lines are executed as a function of n?

T (n) =

Are lines the right unit?



Analyzing Code

The number of lines executed in the worst-case is:

T (n) = 2n+ 1.

▷ Does the “2” matter?

▷ Does the “1” matter?


