Unit #2: Complexity Theory and Asymptotic Analysis CPSC 221: Algorithms and Data Structures

Lars Kotthoff¹ larsko@cs.ubc.ca

¹With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and Kim Voll.

Unit Outline

- Brief proof reminder
- > Algorithm Analysis: Counting steps
- Asymptotic Notation
- Runtime Examples
- Problem Complexity

Learning Goals

- ▷ Given code, write a formula that measures the number of steps executed as a function of the size of the input.
- ▷ Use asymptotic notation to simplify functions and to express relations between functions.
- ▷ Know the asymptotic relations between common functions.
- Understand why to use worst-case, best-case, or average-case complexity measures.
- Give examples of tractable, intractable, and undecidable problems.

Proof by ...

Counterexample

- $\,\triangleright\,$ show an example which does not fit with the theorem
- \triangleright Thus, the theorem is false.

Contradiction

- $\,\triangleright\,$ assume the opposite of the theorem
- \triangleright derive a contradiction
- ▷ Thus, the theorem is true.

Induction

- \triangleright prove for a base case (e.g., n=1)
- ▷ assume for all $n \le k$ (for arbitrary k)
- \triangleright prove for the next value (n = k + 1)
- ▷ Thus, the theorem is true.

Example: Proof by Induction (worked) 1/4

Theorem:

A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3.

Proof:

Let $x_1x_2x_3...x_n$ be the decimal digits of x. Let the sum of its decimal digits be

$$S(x) = \sum_{i=1}^{n} x_i$$

We'll prove the stronger result:

$$S(x) \bmod 3 = x \bmod 3.$$

How do we use induction?

Example: Proof by Induction (worked) 2/4

Base Case:

Consider any number x with one (n = 1) digit (0-9).

$$S(x) = \sum_{i=1}^{n} x_i = x_1 = x.$$

So, it's trivially true that $S(x) \mod 3 = x \mod 3$ when n = 1.

Example: Proof by Induction (worked) 3/4

Inductive hypothesis:

Assume for an arbitrary integer k>0 that for any number x with $n\leq k$ digits:

 $S(x) \mod 3 = x \mod 3.$

Inductive step:

Consider a number x with n = k + 1 digits:

 $x = x_1 x_2 \dots x_k x_{k+1}.$

Let z be the number $x_1x_2...x_k$. It's a k-digit number so the inductive hypothesis applies:

 $S(z) \mod 3 = z \mod 3.$

Example: Proof by Induction (worked) 4/4 Inductive step (continued):

$$x \mod 3 = (10z + x_{k+1}) \mod 3 \qquad (x = 10z + x_{k+1}) \\ = (9z + z + x_{k+1}) \mod 3 \\ = (z + x_{k+1}) \mod 3 \qquad (9z \text{ is divisible by } 3) \\ = (S(z) + x_{k+1}) \mod 3 \qquad (\text{induction hypothesis}) \\ = (x_1 + x_2 + \dots + x_k + x_{k+1}) \mod 3 \\ = S(x) \mod 3$$

QED (quod erat demonstrandum: "what was to be demonstrated")

A Task to Solve and Analyze

Find a student's name in a class given her student ID

Analysis of Algorithms

- ▷ Analysis of an algorithm gives insight into
 - $\,\triangleright\,$ how long the program runs (time complexity or runtime) and
 - ▷ how much memory it uses (space complexity).
- Analysis can provide insight into alternative algorithms
- \triangleright Input size is indicated by a non-negative integer n (sometimes there are multiple measures of an input's size)
- \triangleright Running time is a real-valued function of n such as:

▷
$$T(n) = 4n + 5$$

▷ $T(n) = 0.5n \log n - 2n + 7$
▷ $T(n) = 2^n + n^3 + 3n$

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	
$\log n$	1ps	
n	10ps	
$n\log n$	10ps	
n^2	100ps	
2^n	1ns	

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	
$\log n$	1ps	2ps	
n	10ps	100ps	
$n\log n$	10ps	200ps	
n^2	100ps	10ns	
2^n	1ns	1Es	

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	
$\log n$	1ps	2ps	3ps	
n	10ps	100ps	1ns	
$n\log n$	10ps	200ps	3ns	
n^2	100ps	10ns	$1 \mu { m s}$	
2^n	1ns	1Es	10^{289} s	

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000
$\log n$	1ps	2ps	3ps	4ps
n	10ps	100ps	1ns	10ns
$n\log n$	10ps	200ps	3ns	40ns
n^2	100ps	10ns	$1 \mu { m s}$	$100 \mu s$
2^n	1ns	1Es	10^{289} s	

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10^{5}	
$\log n$	1ps	2ps	3ps	4ps	5ps	
n	10ps	100ps	1ns	10ns	100ns	
$n\log n$	10ps	200ps	3ns	40ns	500ns	
n^2	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	
2^n	1ns	1Es	$10^{289} { m s}$			

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10^{5}	10^{6}	
$\log n$	1ps	2ps	3ps	4ps	5ps	брs	
n	10ps	100ps	1ns	10ns	100ns	1μ s	
$n\log n$	10ps	200ps	3ns	40ns	500ns	6 μ s	
n^2	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	1s	
2^n	1ns	1Es	$10^{289} { m s}$				

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10^{5}	10^{6}	10^{9}
$\log n$	1ps	2ps	3ps	4ps	5ps	брs	9ps
n	10ps	100ps	1ns	10ns	100ns	$1 \mu { m s}$	1ms
$n\log n$	10ps	200ps	3ns	40ns	500ns	б μ s	9ms
n^2	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	1s	1week
2^n	1ns	1Es	10^{289} s				

Analyzing Code

```
// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
    if array[i] == key
        return i
    return -1
```

1) What's the input size, n?

Analyzing Code

```
// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
    if array[i] == key
        return i
    return -1
```

2) Should we assume a worst-case, best-case, or average-case input of size n?

Analyzing Code

```
// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
    if array[i] == key
        return i
    return -1
```

3) How many lines are executed as a function of n? T(n) =

Are lines the right unit?

The number of lines executed in the worst-case is:

$$T(n) = 2n + 1.$$

- ▷ Does the "2" matter?
- ▷ Does the "1" matter?