Unit \#2: Complexity Theory and Asymptotic Analysis CPSC 221: Algorithms and Data Structures

Lars Kotthoff ${ }^{1}$
larsko@cs.ubc.ca

${ }^{1}$ With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and Kim Voll.

Unit Outline

\triangleright Brief proof reminder
\triangleright Algorithm Analysis: Counting steps
\triangleright Asymptotic Notation
\triangleright Runtime Examples
\triangleright Problem Complexity

Learning Goals

\triangleright Given code, write a formula that measures the number of steps executed as a function of the size of the input.
\triangleright Use asymptotic notation to simplify functions and to express relations between functions.
\triangleright Know the asymptotic relations between common functions.
\triangleright Understand why to use worst-case, best-case, or average-case complexity measures.
\triangleright Give examples of tractable, intractable, and undecidable problems.

Proof by ...

\triangleright Counterexample
\triangleright show an example which does not fit with the theorem
\triangleright Thus, the theorem is false.
\triangleright Contradiction
\square assume the opposite of the theorem
\triangleright derive a contradiction
\triangleright Thus, the theorem is true.
\triangleright Induction
\triangleright prove for a base case (e.g., $n=1$)
\triangleright assume for all $n \leq k$ (for arbitrary k)
\triangleright prove for the next value $(n=k+1)$
\triangleright Thus, the theorem is true.

Example: Proof by Induction (worked) $1 / 4$

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3 .

Proof:
Let $x_{1} x_{2} x_{3} \ldots x_{n}$ be the decimal digits of x.
Let the sum of its decimal digits be

$$
S(x)=\sum_{i=1}^{n} x_{i}
$$

We'll prove the stronger result:

$$
S(x) \bmod 3=x \bmod 3
$$

How do we use induction?

Example: Proof by Induction (worked) 2/4

Base Case:
Consider any number x with one ($n=1$) digit (0-9).

$$
S(x)=\sum_{i=1}^{n} x_{i}=x_{1}=x
$$

So, it's trivially true that $S(x) \bmod 3=x \bmod 3$ when $n=1$.

Example: Proof by Induction (worked) 3/4

Inductive hypothesis:
Assume for an arbitrary integer $k>0$ that for any number x with $n \leq k$ digits:

$$
S(x) \bmod 3=x \bmod 3
$$

Inductive step:
Consider a number x with $n=k+1$ digits:

$$
x=x_{1} x_{2} \ldots x_{k} x_{k+1}
$$

Let z be the number $x_{1} x_{2} \ldots x_{k}$. It's a k-digit number so the inductive hypothesis applies:

$$
S(z) \bmod 3=z \bmod 3
$$

Example: Proof by Induction (worked) 4/4

Inductive step (continued):

$$
\begin{aligned}
x \bmod 3 & =\left(10 z+x_{k+1}\right) \bmod 3 & & \left(x=10 z+x_{k+1}\right) \\
& =\left(9 z+z+x_{k+1}\right) \bmod 3 & & \\
& =\left(z+x_{k+1}\right) \bmod 3 & & (9 z \text { is divisible by } 3) \\
& =\left(S(z)+x_{k+1}\right) \bmod 3 & & \text { (induction hypothesis) } \\
& =\left(x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}\right) \bmod 3 & & \\
& =S(x) \bmod 3 & &
\end{aligned}
$$

QED (quod erat demonstrandum: "what was to be demonstrated")

A Task to Solve and Analyze

Find a student's name in a class given her student ID

Analysis of Algorithms

\triangleright Analysis of an algorithm gives insight into
\triangleright how long the program runs (time complexity or runtime) and
\triangleright how much memory it uses (space complexity).
\triangleright Analysis can provide insight into alternative algorithms
\triangleright Input size is indicated by a non-negative integer n (sometimes there are multiple measures of an input's size)
\triangleright Running time is a real-valued function of n such as:

$$
\begin{aligned}
& \triangleright T(n)=4 n+5 \\
& \triangleright T(n)=0.5 n \log n-2 n+7 \\
& \triangleright T(n)=2^{n}+n^{3}+3 n
\end{aligned}
$$

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10
$\log n$	1 ps
n	10 ps
$n \log n$	10 ps
n^{2}	100 ps
2^{n}	1 ns

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100
$\log n$	1 ps	2 ps
n	10 ps	100 ps
$n \log n$	10 ps	200 ps
n^{2}	100 ps	10 ns
2^{n}	1 ns	1 Es

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000
$\log n$	1 ps	2 ps	3 ps
n	10 ps	100 ps	1 ns
$n \log n$	10 ps	200 ps	3 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000	10,000
$\log n$	1 ps	2 ps	3 ps	4 ps
n	10 ps	100 ps	1 ns	10 ns
$n \log n$	10 ps	200 ps	3 ns	40 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$	

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000	10,000	10^{5}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$		

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000	10,000	10^{5}	10^{6}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns	$1 \mu \mathrm{~s}$
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns	$6 \mu \mathrm{~s}$
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms	1 s
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$			

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000	10,000	10^{5}	10^{6}	10^{9}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps	9 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns	$1 \mu \mathrm{~s}$	1 ms
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns	$6 \mu \mathrm{~s}$	9 ms
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms	1 s	1 week
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$				

Exasecond(Es) $=32$ billion years

Analyzing Code

// Linear search
find (key, array)
for $i=0$ to length(array) - 1 do
if array[i] == key
return i
return -1

1) What's the input size, n ?

Analyzing Code

```
// Linear search
find(key, array)
    for i = 0 to length(array) - 1 do
        if array[i] == key
            return i
    return -1
```

2) Should we assume a worst-case, best-case, or average-case input of size n ?

Analyzing Code

// Linear search
find (key, array)
for i = 0 to length(array) - 1 do
if array[i] == key
return i
return -1
3) How many lines are executed as a function of n ?
$T(n)=$
Are lines the right unit?

Analyzing Code

The number of lines executed in the worst-case is:

$$
T(n)=2 n+1
$$

\triangleright Does the "2" matter?
\triangleright Does the " 1 " matter?

