
Unit #1: Abstract Data
Types

CPSC 221: Algorithms and Data Structures

Lars Kotthoff1

larsko@cs.ubc.ca

1With material from Will Evans, Steve Wolfman, Alan Hu, Ed Knorr, and
Kim Voll.



Abstract Data Type

formally mathematical description of an object and the set of
operations on the object

in practice interface of a data structure without implementation



Example: Dictionary ADT

▷ stores pairs of strings: (word, definition)
▷ operations:

▷ insert(word,definition)
▷ delete(word)
▷ find(word) _ definition



Another Example: Array ADT

▷ store things like integers, (pointers to) strings, etc.
▷ operations:

▷ initialize an empty array that can hold n things
thing A[n];

▷ access (read or write) the ith thing in the array (0 ≤ i ≤ n− 1)
thing1 = A[i]; Read
A[i] = thing2; Write



Why Arrays?

▷ computer memory is an array

▷ read: CPU provides address i, memory unit returns the data
stored at i

0x0..0
0x0..1
0x0..2
0x0..3
0x0..4
0x0..5
0x0..6
0x0..7
0x0..8
0x0..9
0x0..A
0x0..B

0x0..7

Address

42

Data

Memory

CPU
42
4
1
3
16
32
128
0

5

2
9

6

Read

...



Why Arrays?

▷ computer memory is an array

▷ write: CPU provides address i and data d, memory unit stores
data d at i

0x0..0
0x0..1
0x0..2
0x0..3
0x0..4
0x0..5
0x0..6
0x0..7
0x0..8
0x0..9
0x0..A
0x0..B

0x0..7

Address

1

Data

Memory

CPU
1
4
1
3
16
32
128
0

5

2
9

6

Write

...



Why Arrays?

Computer memory is an array. Every bit has a physical location.

http://zeptobars.ru/en/read/how-to-open-microchip-asic-what-inside licensed under

Creative Commons Attribution 3.0 Unported.



Why Arrays?

▷ computer memory is an array

▷ simple and fast

▷ used in almost every program

▷ used to implement other data structures



Array limitations

▷ need to know size when array is created

Fix: resizeable arrays
If the array fills up, allocate a new, bigger array and copy the
old contents to the new array.

▷ Indices are integers 0,1,2,. . .

Fix: hashing
(more later)



How would you implement the Array ADT?

Arrays in C++

Create: int A[100];

Access: for(int i=0; i<100; i++)

A[i] = (i+1) * A[i-1];

Warning No bounds checking!



How would you implement the Array ADT?

Arrays in C++

Create: int A[100];

Access: for(int i=0; i<100; i++)

A[i] = (i+1) * A[i-1];

Warning No bounds checking!



Data Structures as Algorithms

Algorithm

a high level, language independent description of a step-by-step
process for solving a problem

Data Structure
a way of storing and organizing data so that it can be manipulated
as described by an ADT

A data structure is defined by the algorithms that implement the
ADT operations.



Why so many data structures?

Ideal data structure
fast, elegant, memory efficient

Trade-offs

▷ time vs. space

▷ performance vs. elegance

▷ generality vs. simplicity

▷ one operation’s performance vs.
another’s

Data structures for
Dictionary ADT

▷ List

▷ Skip list

▷ Binary search tree

▷ AVL tree

▷ Splay tree

▷ B-tree

▷ Red-Black tree

▷ Hash table

. . .



Code Implementation

Theory

▷ abstract base class (interface) describes ADT

▷ concrete classes implement data structures for the ADT

▷ data structures can change without affecting client code

Practice

▷ different implementations sometimes suggest different
interfaces (generality vs. simplicity)

▷ performance of a data structure may influence the form of the
client code (time vs. space, one operation vs. another)



ADT Presentation Algorithm

1. present an ADT

2. motivate with some applications

3. repeat

3.1 develop a data structure for the ADT
3.2 analyze its properties

▷ efficiency
▷ correctness
▷ limitations
▷ ease of programming

4. contrast data structure’s strengths and weaknesses
▷ understand when to use each one



Queue ADT

Queue operations

F E D C B
enqueue

G
dequeue

A

▷ create

▷ destroy

▷ enqueue

▷ dequeue

▷ is empty

Queue property

If x is enqueued before y is enqueued, then x will be dequeued
before y is dequeued.

FIFO: First In First Out



Applications of the Queue

▷ hold jobs for a printer

▷ store packets on network routers

▷ hold memory “freelists”

▷ make waitlists fair

▷ breadth first search



Abstract Queue Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

In order, what letters are dequeued?

a. OATE

b. ROTA

c. OTAE

d. None of these, but it can be
determined from just the ADT.

e. None of these, and it cannot be
determined from just the ADT.



Circular Array Queue Data Structure

0 size − 1
a

Q

b c d e
front = 7

7

back = 12

12

void enqueue(Object x) {

Q[back] = x;

back = (back + 1) % size;

}

bool is_empty() {

return (front == back);

}

Object dequeue() {

x = Q[front];

front = (front + 1) % size;

return x;

}

bool is_full() {

return (front ==

(back + 1) % size);

}



Circular Array Queue Example

Size = 4

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

What are the final contents of the array
queue?

a. RTE

b. RTET

c. TETA

d. TE

e. None



Linked List Queue Data Structure

b c d e b ∅

front back

void enqueue(Object x) {

if (is_empty())

front = back = new Node(x);

else {

back->next = new Node(x);

back = back->next;

}

}

bool is_empty() {

return (front == NULL);

}

Object dequeue() {

assert(!is_empty());

Object ret = front->data;

Node *temp = front;

front = front->next;

delete temp;

return ret;

}

DIY memory management



Circular Array vs. Linked List

▷ ease of implementation

▷ generality

▷ speed

▷ memory use


