
CPSC 221: Fall 2015 Lab 7

These must be completed and shown to your lab TA either by the end of this lab,
or by the start of your next lab. You can work in groups of up to two people.

1. Download the hash table code (hash.zip) from the course webpage under Lab 7. You will be comparing
three different open addressing schemes.

2. Complete the following functions in hash.cpp:

void Hash::qinsert(int k) {

// Insert k in the hash table.

// Use open addressing with quadratic probing and hash(k) = k % m.

void Hash::linsert(int k) {

// Insert k in the hash table.

// Use open addressing with linear probing and hash(k) = k % m.

void Hash::dinsert(int k) {

// Insert k in the hash table.

// Use open addressing with double hashing. Use the existing hash function

// and also implement a second hash function.

You must complete these functions so that they call tallyProbes on every successful insertion, with
the number of probes required for that insertion. Note that:

./hash q 900000 1000000

will insert 900,000 random keys into a hash table of size 1,000,000 using quadratic probing, while:

./hash d 8000 10000

will insert 8,000 random keys into a hash table of size 10,000. Replacing the d with an l will insert
keys using linear probing.

3. Run a few experiments to see how the average number of probes per insertion differs when using the
different methods and different load factors. You should think of this as a regular scientific experiemnt
that generates data. You need to run enough experiements to justify your conclusions, and you need
to use a table large enough. Try to make the table as large as possible such that you don’t have to
wait and unreasonable amount of time for the results. Answer the following questions:

(i) Under what load factors is linear probing just as good as quadratic probing? When does quadratic
begin to win out?

(ii) How does the choice of hash function affect double hashing? Can you devise a hash function that
makes double hashing just as good as quadratic probing? Can you make it even better? Make
sure you try a few to be able to justify your answer.

(iii) When does double hashing begin to win against both of the other schemes? (i.e. at what capacities
and load factors do you see a significant gain over the other methods?)

(iv) Finally, which open addressing scheme would you choose and why? Would you always choose this
scheme?

4. Modify the main method in driver.cc to automate some of your experiments from question 3. Be
prepared to explain what you tested to your TA. You can run your added experiment code using:

./hash

1



CPSC 221: Fall 2015 Lab 7

For example, you could add something like this:

Hashtable H(10000);

for (int i = 0; i < 7500; i++) {

linsert(rand() + 1);

}

cout << "Linear with 7500 keys and size 10000: ";

H.printStats();

to automatically see how insert with linear probing performs when inserting 7,500 keys into a hash
table of size 10,000. What other experiments might you automate to help you answer the questions
from 3?

5. Be sure to show your work to your TA before you leave, or at the start of the next lab, or you will not
receive credit for the lab!

2


