CPSC 221: Data Structures B+-Trees

Alan J. Hu (Using mainly Steve Wolfman's Slides)

Learning Goals

After this unit, you should be able to:

- Describe the structure, navigation and complexity of an order m B-tree.
- Insert and delete elements from a B+-tree, maintaining the half-full principle.
- Explain the relationship among the order of a B+-tree, the number of nodes, and the minimum and maximum elements of internal and external nodes.
- Compare and contrast B+-trees with other data structures.
- Justify why the number of I/Os becomes a more appropriate complexity measure (than the number of operations/steps) when dealing with larger datasets and their indexing structures (e.g., B+-trees).
- Describe a B+-Tree and explain the difference between a B-tree and a B+ Tree 2

B-Tree Motivation

- We've got balanced BSTs (e.g. AVL trees):
 - Guaranteed worst case O(log n) performance for insert, find, delete
- We'll get hash tables:
 - Expected O(1) insert, find, delete
- Why in the world do we need **another** dictionary data structure???

Answer: Because constant factors matter in practice!

Memory Hierarchy

- Computers are built with different kinds of memory, because it's impossibly expensive (and physically impossible) to build all memory to be incredibly fast:
 - Processor Registers: 100s of locations, <1 cycle access time
 - L1 Cache: 1000s of locations, a few cycles to access
 - L2/L3 Cache: Millions of locations, tens of cycles to access
 - Main Memory: Billions of locations, hundreds of cycles to access
 - Disk: Trillions of locations (or more), millions of cycles to access

Coping with the Memory Hierarchy

- Wait! I can go to Future Shop and buy a 1TB disk for less than a hundred bucks. If average seek time is 10ms for a disk read, it should take me about 1TB * 10ms to read all the data off the disk.
- 1 tera * 10 ms = 10 billion seconds > 300 years
- Either that disk is VERY slow, or your numbers are wrong. What's going on?

Answer: You don't read/write one byte at a time.

Coping with the Memory Hierarchy

- At every level of the memory hierarchy, the slow access to the lower level is amortized by getting a whole bunch of data at once.
 - For cache, these are called "cache lines" or "blocks", 16, 32, 64, 128 bytes, etc. common
 - For main memory, typically called "pages", 1k, 2k, 4k, 8k, 16k, etc. common
 - For disk, typically called "blocks", 1k, 2k, 4k, 8k, etc.
 common

Coping with the Memory Hierarchy

- Therefore, *random* accesses are very slow.
- Sequential access, or lots of access to a single block of data, are much much faster.
- What do hash tables do?
- What do AVL trees do?

M-ary Search Tree

- Maximum branching factor of *M*
- Complete tree has depth = log_MN
- Each internal node in a complete tree has

M – 1 keys

runtime:

Incomplete *M*-ary Search Tree 🟵

- Just like a binary tree, though, complete m-ary trees has m^0 nodes, $m^0 + m^1$ nodes, $m^0 + m^1 + m^2$ nodes,
- What about numbers in between??

. . .

B-Trees

3

 $7 \le x \le 12$

 $3 \le x < 7$

7

12|21

 $2 \le x \le 2$

21 < x

- B-Trees are specialized *M*-ary search trees
- Each node has many keys
 - subtree between two keys x and y contains values v such that $x \le v < y$
 - binary search within a node to find correct subtree
- Each node takes one full {*page, block, line*} of memory
- ALL the leaves are at the same depth!

Today's Outline

- B-tree motivation
- B+-tree properties
- Implementing B+-tree insertion and deletion
- Some final thoughts on B+-trees

- Properties
 - maximum branching factor of M
 - the root has between 2 and *M* children *or* at most *L* keys/values
 - other internal nodes have between $\lceil M/2 \rceil$ and M children
 - internal nodes contain only *search* keys (no data)
 - smallest datum between search keys x and y equals x
 - each (non-root) leaf contains between $\lfloor L/2 \rfloor$ and *L* keys/values
 - all leaves are at the same depth
- Result
 - tree is $\Theta(\log_M n)$ deep (between $\log_{M/2} n$ and $\log_M n$)
 - all operations run in $\Theta(\log_M n)$ time
 - operations get about M/2 to M or L/2 to L items at a time

- Properties
 - maximum branching factor of M
 - the root has between 2 and *M* children *or* at most *L* keys/values
 - other internal nodes have between $\lceil M/2 \rceil$ and M children
 - internal nodes contain only search keys (no data)
 - smallest datum between search keys *x* and *y* equals *x*
 - each (non-root) leaf contains between $\lceil L/2 \rceil$ and L keys/values
 - all leaves are at the same depth
- Result
 - tree is $\Theta(\log_M n)$ deep (between $\log_{M/2} n$ and $\log_M n$)
 - all operations run in $\Theta(\log_M n)$ time
 - operations get about M/2 to M or L/2 to L items at a time

- Properties
 - maximum branching factor of **M**
 - the root has between 2 and **M** children or at most **L** keys/values
 - other internal nodes have between $\lceil M/2 \rceil$ and M children
 - internal nodes contain only search keys (no data)
 - smallest datum between search keys x and y equals x
 - each (non-root) leaf contains between $\lfloor L/2 \rfloor$ and *L* keys/values
 - all leaves are at the same depth
- Result
 - tree is $\Theta(\log_M n)$ deep (between $\log_{M/2} n$ and $\log_M n$)
 - all operations run in $\Theta(\log_M n)$ time
 - operations get about M/2 to M or L/2 to L items at a time

- Properties
 - maximum branching factor of M
 - the root has between 2 and *M* children *or* at most *L* keys/values
 - other internal nodes have between $\lceil M/2 \rceil$ and M children
 - internal nodes contain only search keys (no data)
 - smallest datum between search keys *x* and *y* equals *x*
 - each (non-root) leaf contains between $\lfloor L/2 \rfloor$ and *L* keys/values
 - all leaves are at the same depth
- Result
 - tree is $\Theta(\log_M n)$ deep (between $\log_{M/2} n$ and $\log_M n$)
 - all operations run in $\Theta(\log_M n)$ time
 - operations get about M/2 to M or L/2 to L items at a time

Aside: B-Tree Properties

- Properties
 - maximum branching factor of M
 - the root has between 2 and *M* children *or* at most *L* keys/values
 - other internal nodes have between $\lceil M/2 \rceil$ and *M* children
 - internal nodes contain only search keys (no data)
 - smallest datum between search keys x and y equals x
 - each (non-root) leaf contains between $\lceil L/2 \rceil$ and *L* keys/values
 - all leaves are at the same depth
- Result
 - tree is $\Theta(\log_M n)$ deep (between $\log_{M/2} n$ and $\log_M n$)
 - all operations run in $\Theta(\log_M n)$ time
 - operations get about M/2 to M or L/2 to L items at a time

Aside: B-Tree Properties

- Properties
 - maximum branching factor of M
 - the root has between 2 and *M* children *or* at most *L* keys/values
 - other internal nodes have between $\lceil M/2 \rceil$ and *M* children
 - internal nodes do contain data Just like BSTs!
 - data in subtrees between keys x and y strictly between x and y
 - each (non-root) leaf contains between $\lceil L/2 \rceil$ and *L* keys/values
 - all leaves are at the same depth
- Result
 - tree is $\Theta(\log_M n)$ deep (between $\log_{M/2} n$ and $\log_M n$)
 - all operations run in $\Theta(\log_M n)$ time
 - operations get about M/2 to M or L/2 to L items at a time

Today's Outline

- Addressing our other problem
- B+-tree properties
- Implementing B+-tree insertion and deletion
- Some final thoughts on B+-trees

B+Tree Nodes

• Internal node

i search keys; i+1 children; M − 1 −i inactive keys

k ₁	k ₂	•••	k _i	_	• • •	_	
1 /	2	\downarrow	i	Ţ		М –	1

• Leaf

j data keys; *L* – j inactive entries

Alan's Aside: B+Tree Nodes

```
struct btree node {
  bool is leaf;
  int key count;
  int key[max(M-1, L)]; // some key type in reality
  int child count;
  union { // uses same memory space
      btree node *child[M];
                                      child[i] between
                                      key[i-1] and key[i]
      data type *leaf data[L];
```

Alan's Aside: B+Tree Nodes

```
struct btree node {
  bool is leaf;
  int key count;
  int key[max(M-1, L)]; // some key type in reality
  int child count;
  union { // uses same memory space
      btree node *child[M];
                                      child[i] between
                                      key[i-1] and key[i]
      data type *leaf data[L];
```

The smallest key in subtree rooted at child[i] is exactly equal to key[i-1]

Example

B+Tree Find Pseudo-Code

```
data type * find(btree node *root, int target) {
  if (root->is leaf) {
      binary search on root->key array for target
      if (found at location i) return root->leaf data[i];
      else return null;
  }
  binary search on root->key array for target
  let i be the correct subtree
  return find(root->child[i], target)
}
```

Making a B+Tree

B-Tree with M = 3and L = 2 Now, Insert(1)?

Splitting the Root

Propagating Splits

After More Routine Inserts

Insertion in Boring Text

- Insert the key in its leaf
- If the leaf ends up with L+1 items, **overflow**!
 - Split the leaf into two nodes:
 - original with $\lceil (L+1)/2 \rceil$ items
 - new one with $\lfloor (L+1)/2 \rfloor$ items
 - Add the new child to the parent
 - (If the parent ends up with *M*+1 items, overflow!)

- If an internal node ends up with M+1 items, **overflow**!
 - Split the node into two nodes:
 - original with $\lceil (M+1)/2 \rceil$ items
 - new one with (M+1)/2 items
 - Add the new child to the parent
 - (If the parent ends up with M+1 items, overflow!)
- Split an overflowed root in two and hang the new nodes under a new root

This makes the tree deeper!

Insertion Recursion in English

- If key is in my key array, return. It's already in the dictionary.
- If this node is a leaf,
 - insert the new key/data into the leaf.
 - If the leaf is too big, split into two leaves, and return, notifying my parent of the overflow, the new leaf, and the key value for the new leaf.
- If this node is not a leaf,
 - recurse down the correct child.
 - If the child returns no overflow, then just return.
 - If the child returns overflow, then insert new key/child into my arrays.
 - If preceding step makes me overflow, split myself into two nodes, and return, notifying my parents of the overflow, the new node, and key value for new node.

{

```
// Assuming no duplicate keys inserted...
if (root->is leaf) {
     if (child count<L) {
              insert new key and data into arrays
               overflow = false;
              return;
     } else {
               create a new node and move half of keys/data over
               overflow = true; new key = smallest key of new node;
              return;
}
```

// Recursive case

ł

binary search on root->key array for target

let i be the correct subtree

insert (root->child[i], target, data, overflow, ...);

// Recursive case

. . .

. . .

}

?

insert (root->child[i], target, data, overflow, ...);
if (overflow) {

```
. . .
if (overflow) {
    if (key count<M-1) {
            insert new key and child into arrays
            overflow = false;
            return;
    } else {
            create a new node and move half of the children over
            overflow = true;
            new key = the key that used to be at the split;
            return;
     }
```

}

B+Tree Insert Pseudo-Code 3

```
if (overflow) {
     if (key count<M-1) {
             insert new key and child into arrays
             overflow = false;
             return;
     } else {
             create a new node and move half of the children over
             overflow = true;
             new key = the key that used to be at the split;
             return;
                                             This is where B+Tree property is very handy!
     }
```

}

B+Tree Insert: Wrapper

- Our insert function has prototype:
- void insert(btree_node *root, int target, data_type *
 data, bool &overflow, int &new_key, btree_node
 *&new_node)
- Dictionary ADT insert doesn't!
- We've actually written an insert_helper. Must write an insert function that has proper prototype.
- This insert function will also take care of creating new nodes when root splits.

Deletion

Deletion and Adoption

P.S. Parent + neighbour pointers. Expensive?

- a. Definitely yes
- b. Maybe yes
- c. Not sure
- d. Maybe no
- e. Definitely no

Deletion with Propagation

the leaves

89

14 26

79

can drop below L/2 without being empty! (Ditto for M.)

Finishing the Propagation (More Adoption)

A Bit More Adoption

Pulling out the Root

Pulling out the Root (continued)

Deletion in *Two* Boring Slides of Text

- Remove the key from its leaf
- If the leaf ends up with fewer than [L/2] items, underflow!
 - Adopt data from a neighbor; update the parent
 - If borrowing won't work, delete node and divide keys between neighbors
 - If the parent ends up with fewer than [*M*/2] items, underflow!

Will dumping keys always work if adoption does not?

- a. Yes
- b. It depends
- c. No

Deletion Slide Two

- If a node ends up with fewer than [M/2] items, underflow!
 - Adopt subtrees from a neighbor; update the parent
 - If borrowing won't work, merge with neighbor and update the parent
 - If the parent ends up with fewer than [*M*/2] items, underflow!
- If the root ends up with only one child, make that child the new root of the tree

This reduces the height of the tree!

Deletion Recursion in English 1

- This is the big picture. We'll have to fix some details later:
- Base Case: If node is a leaf, search the leaf for key.
 - If not found, then nothing to do. Return.
 - If found, delete the key/data from the leaf.
 - Return, notifying parent if we underflowed.
- If node isn't a leaf:
 - Recurse down correct child.
 - If it returns without underflow, nothing more to do. Return.
 - If child underflowed, try to borrow from child's sibling(s).
 - If that fails, merge child with a sibling.
 - Return, notifying parent if we underflowed.

Deletion Recursion in English 1

- This is the big picture. We'll have to fix some details later:
- Base Case: If node is a leaf, search the leaf for key.
 - If not found, then nothing to do. Return.
 - If found, delete the key/data from the leaf.
 - Return, notifying parent if we underflowed.
- If node isn't a leaf:
 - Recurse down correct child.
 - If it returns without underflow, nothing more to do. Return.
 - If child underflowed, try to borrow from child's sibling(s).
 - If that fails, merge child with a sibling.
 - Return, notifying parent if we underflowed.

Borrowing from Left Sibling

- root->key[i-1] separates root->child[i-1] from root->child[i]
- Suppose I want to borrow a key/subtree from child[i-1] for child[i]. How do I do this?
 - Just remove from one array and insert into the other.
 - But, what are the new keys???
 - root->key[i-1]?
 - new root->child[i]->key[0]?
 - Anything else?
 - (Draw this out. Aha! Thanks to B+Tree property, keys are there!)

Borrowing from Right Sibling

- root->key[i] separates root->child[i] from root->child[i+1]
- Suppose I want to borrow a key/subtree from child[i+1] for child[i]. How do I do this?
 - Just remove from one array and insert into the other.
 - But, what are the new keys???
 - root->key[i]?
 - new root->child[i]->key[key_count]?
 - Anything else?
 - (Draw this out. Aha! Thanks to B+Tree property, keys are there!)

Deletion Recursion in English 1

- This is the big picture. We'll have to fix some details later:
- Base Case: If node is a leaf, search the leaf for key.
 - If not found, then nothing to do. Return.
 - If found, delete the key/data from the leaf.
 - Return, notifying parent if we underflowed.
- If node isn't a leaf:
 - Recurse down correct child.
 - If it returns without underflow, nothing more to do. Return.
 - If child underflowed, try to borrow from child's sibling(s).
 - If that fails, merge child with a sibling.
 - Return, notifying parent if we underflowed.

Merging with Left Sibling

- root->key[i-1] separates root->child[i-1] from root->child[i]
- Suppose we want to merge child[i-1] and child[i]. How do we do this?
 - Just merge keys/children/data arrays!
 - Delete root->key[i-1] from root->key[] array
 - But, before you do that, use root->key[i-1] as key to separate largest of child[i-1]'s children from smallest of child[i]'s children.
 - (Draw this out. Aha! Thanks to B+Tree property, keys are there!)

Merging with Right Sibling

- root->key[i] separates root->child[i] from root->child[i+1]
- Suppose we want to merge child[i] and child[i+1]. How do we do this?
 - Just merge keys/children/data arrays!
 - Delete root->key[i] from root->key[] array
 - But, before you do that, use root->key[i] as key to separate largest of child[i]'s children from smallest of child[i+1]'s children.
 - (Draw this out. Aha! Thanks to B+Tree property, keys are there!)

Wait! What if smallest value is the one deleted?!?

- Then the B+Tree property that key[i] is smallest value in child[i+1] doesn't hold temporarily.
- Therefore, preceding code is slightly wrong.
- Easy fix: Have the recursive calls return the value of the smallest item in their subtree, if it changed:
 - Base Case: In a leaf, if smallest value deleted, notify parent of new smallest value.
 - Recursion: If a recursive call on my child returns a new smallest value:
 - Update it's key, if it's not a leftmost child.
 - Notify my parent that **MY** smallest value has changed if it was my leftmost child.

Deletion Recursion in English -- Fixed

- Base Case: If node is a leaf, search the leaf for key.
 - If not found, then nothing to do. Return.
 - If found, delete the key/data from the leaf.
 - Return, notifying parent if we underflowed and new smallest value if it changed.
- If node isn't a leaf:
 - Recurse down correct child i.
 - If child i tells me it changed smallest value, update key[i-1], or if i=0, save value to notify my parent that my smallest value changed.
 - If it returns without underflow, nothing more to do. Return.
 - If child underflowed, try to borrow from child's sibling(s).
 - If that fails, merge child with a sibling.
 - Return, notifying parent if we underflowed and new smallest value if it changed.

Today's Outline

- Addressing our other problem
- B+-tree properties
- Implementing B+-tree insertion and deletion
- Some final thoughts on B+-trees

Thinking about B+Trees

- B+Tree insertion can cause (expensive) splitting and propagation (could we do something like borrowing?)
- B+Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if **M** and **L** are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If M = L = 128, then a B-Tree of height 4 will store at least 30,000,000 items

Aside: B-Trees vs. B+Trees

- B-Trees were the original
 - Closer in structure to BSTs
 - Same asymptotic complexity as B+Trees
- B+Trees are more common in practice
 - Leaves are typically also linked together in a linked list
 - Makes it easy to do range queries
 - Leaves can be optimized for storing data
 - Easier to implement and explain operations
 - E.g., consider general case of merging nodes during deletion

A Tree by Any Other Name

FYI:

- B-Trees with M = 3, L = x are called 2-3 trees
- B-Trees with M = 4, L = x are called 2-3-4 trees
- 2-3-4 trees are basically the same as "Red-Black trees"

Why would we ever use these?