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Learning Goals
After this unit, you should be able to:
• Describe the structure, navigation and complexity of an order m B-tree.
• Insert and delete elements from a B+-tree, maintaining the half-full principle.
• Explain the relationship among the order of a B+-tree, the number of nodes, and the minimum and maximum elements of internal and external nodes.
• Compare and contrast B+-trees with other data structures.
• Justify why the number of I/Os becomes a more appropriate complexity measure (than the number of operations/steps) when dealing with larger datasets and their indexing structures (e.g., B+-trees).
• Describe a B+-Tree and explain the difference between a B-tree and a B+ Tree 2



B-Tree Motivation
• We’ve got balanced BSTs (e.g. AVL trees):

– Guaranteed worst case O(log n) performance for insert, 
find, delete

• We’ll get hash tables:
– Expected O(1) insert, find, delete

• Why in the world do we need another dictionary 
data structure???

Answer:  Because constant factors matter in practice!



Memory Hierarchy
• Computers are built with different kinds of memory, because it’s impossibly expensive (and physically impossible) to build all memory to be incredibly fast:

– Processor Registers:  100s of locations, <1 cycle access time
– L1 Cache:  1000s of locations, a few cycles to access
– L2/L3 Cache:  Millions of locations, tens of cycles to access
– Main Memory:  Billions of locations, hundreds of cycles to access
– Disk:  Trillions of locations (or more), millions of cycles to access



Coping with the Memory Hierarchy
• Wait!  I can go to Future Shop and buy a 1TB disk 

for less than a hundred bucks.  If average seek 
time is 10ms for a disk read, it should take me 
about 1TB * 10ms to read all the data off the disk.

• 1 tera * 10 ms = 10 billion seconds > 300 years
• Either that disk is VERY slow, or your numbers 

are wrong.  What’s going on?
Answer:  You don’t read/write one byte at a time.



Coping with the Memory Hierarchy
• At every level of the memory hierarchy, the slow 

access to the lower level is amortized by getting a 
whole bunch of data at once.
– For cache, these are called “cache lines” or “blocks”, 

16, 32, 64, 128 bytes, etc. common
– For main memory, typically called “pages”,  1k, 2k, 4k, 

8k, 16k, etc. common
– For disk, typically called “blocks”, 1k, 2k, 4k, 8k, etc. 

common



Coping with the Memory Hierarchy
• Therefore, random accesses are very slow.
• Sequential access, or lots of access to a single 

block of data, are much much faster.

• What do hash tables do?
• What do AVL trees do?



M-ary Search Tree
• Maximum branching 

factor of M
• Complete tree has 

depth = logMN
• Each internal node in a 

complete tree has 
M - 1 keys
runtime:



Incomplete M-ary Search Tree 
• Just like a binary 

tree, though, 
complete m-ary trees 
has m0 nodes,        
m0 + m1 nodes, 
m0 + m1 + m2 nodes, 
…

• What about numbers 
in between??



B-Trees
• B-Trees are specialized M-ary search 

trees
• Each node has many keys

– subtree between two keys x and y 
contains values v such that x  v < y 

– binary search within a node 
to find correct subtree

• Each node takes one 
full {page, block, line} 
of memory

• ALL the leaves are at the same depth!

3 7 12 21

x<3 3x<7 7x<12 12x<21 21x



Today’s Outline
• B-tree motivation
• B+-tree properties
• Implementing B+-tree insertion and deletion
• Some final thoughts on B+-trees



B+Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys/values
– other internal nodes have between M/2 and M children
– internal nodes contain only search keys (no data)
– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between L/2 and L keys/values
– all leaves are at the same depth

• Result
– tree is (logM n) deep (between logM/2 n and logM n)
– all operations run in (logM n) time
– operations get about M/2 to M or L/2 to L items at a time
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Aside:  B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys/values
– other internal nodes have between M/2 and M children
– internal nodes contain only search keys (no data)
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Aside:  B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys/values
– other internal nodes have between M/2 and M children
– internal nodes do contain data
– data in subtrees between keys x and y strictly between x and y
– each (non-root) leaf contains between L/2 and L keys/values
– all leaves are at the same depth

• Result
– tree is (logM n) deep (between logM/2 n and logM n)
– all operations run in (logM n) time
– operations get about M/2 to M or L/2 to L items at a time

Just like BSTs!



Today’s Outline
• Addressing our other problem
• B+-tree properties
• Implementing B+-tree insertion and deletion
• Some final thoughts on B+-trees



…__ __k1 k2 … ki

B+Tree Nodes
• Internal node

i search keys; i+1 children; M – 1 -i inactive keys

• Leaf
j data keys; L - j inactive entries
k1 k2 … kj …__ __

1 2 M - 1

1 2 L

i

j



Alan’s Aside:  B+Tree Nodes
struct btree_node {

bool is_leaf;
int key_count;
int key[max(M-1, L)]; // some key_type in reality
int child_count;
union {  // uses same memory space

btree_node *child[M];
data_type *leaf_data[L];

}
}

child[i] between
key[i-1] and key[i]



Alan’s Aside:  B+Tree Nodes
struct btree_node {

bool is_leaf;
int key_count;
int key[max(M-1, L)]; // some key_type in reality
int child_count;
union {  // uses same memory space

btree_node *child[M];
data_type *leaf_data[L];

}
}

child[i] between
key[i-1] and key[i]

The smallest key in subtree rooted at 
child[i] is exactly equal to key[i-1]



Example
B+Tree with M = 4
and L = 4

1 2
3 5 6 9

10 11 12
15 17

20 25 26
30 32 33 36

40 42
50 60 70

10 40

3 15 20 30 50



Example
B+Tree with M = 4
and L = 4

1 2
3 5 6 9

10 11 12
15 17

20 25 26
30 32 33 36

40 42
50 60 70

10 40

3 15 20 30 50

Notice in these pictures that we are 
drawing the keys, but not the pointers, 
so there are 3 boxes, but M=4



B+Tree Find Pseudo-Code
data_type * find(btree_node *root, int target) {

if (root->is_leaf) {
binary search on root->key array for target
if (found at location i) return root->leaf_data[i];
else return null;

}
binary search on root->key array for target
let i be the correct subtree
return find(root->child[i], target)

}



Making a B+Tree

The empty 
B+Tree

M = 3 L = 2

3Insert(3) 3 14Insert(14)

Now, Insert(1)?B-Tree with M = 3
and L = 2



Splitting the Root

And create
a new root

1 3 14

1 3 14

14

1 3 143 14 Insert(1)

Too many 
keys in a leaf!

So, split the leaf.



Insertions and Split Ends

Insert(59)
14

1 3 14 59

14

1 3 14
Insert(26)

14

1 3 14 26 59

14 26 59

14 59

1 3 14 26 59
And add 

a new child

Too many 
keys in a leaf!

So, split the leaf.



Insertions and Split Ends

Insert(59)
14

1 3 14 59

14

1 3 14
Insert(26)

14

1 3 14 26 59

14 26 59

14 59

1 3 14 26 59
And add 

a new child

Too many 
keys in a leaf!

So, split the leaf.
Alan’s Aside:
I don’t really like this
picture.  Leaves are
always at same level.
Tree grows from the
root!



Propagating Splits
14 59

1 3 14 26 59

14 59

1 3 14 26 595

1 3 5

Insert(5)

5 14

14 26 591 3 5

59
5 595

1 3 5 14 26 59

59

14

Add new
child

Create a
new root

Too many keys in an internal node!

So, split the node.



After More Routine Inserts
5

1 3 5 14 26 59

59

14

5

1 3 5 14 26 59 79

59 89

14

89

Insert(89)
Insert(79)



Insertion in Boring Text
• Insert the key in its leaf
• If the leaf ends up with L+1 

items, overflow!
– Split the leaf into two nodes:

• original with (L+1)/2 items
• new one with (L+1)/2 items

– Add the new child to the parent
– (If the parent ends up with M+1

items, overflow!)

• If an internal node ends up 
with M+1 items, overflow!
– Split the node into two nodes:

• original with (M+1)/2 items
• new one with (M+1)/2 items

– Add the new child to the parent
– (If the parent ends up with M+1

items, overflow!)

• Split an overflowed root in two 
and hang the new nodes under 
a new rootThis makes the tree deeper!



Insertion Recursion in English
• If key is in my key array, return.  It’s already in the dictionary.
• If this node is a leaf,

– insert the new key/data into the leaf.  
– If the leaf is too big, split into two leaves, and return, notifying my parent of 

the overflow, the new leaf, and the key value for the new leaf.
• If this node is not a leaf,

– recurse down the correct child.
– If the child returns no overflow, then just return.
– If the child returns overflow, then insert new key/child into my arrays.
– If preceding step makes me overflow, split myself into two nodes, and return, 

notifying my parents of the overflow, the new node, and key value for new 
node.



B+Tree Insert Pseudo-Code
void insert(btree_node *root, int target, data_type * data,

bool &overflow, int &new_key, btree_node *&new_node)
{

// Assuming no duplicate keys inserted…
if (root->is_leaf) {

if (child_count<L) {
insert new key and data into arrays
overflow = false;
return;

} else {
create a new node and move half of keys/data over
overflow = true; new_key = smallest key of new node;
return;

}
}



B+Tree Insert Pseudo-Code 2
void insert(btree_node *root, int target, data_type * data,

bool &overflow, int &new_key, btree_node 
*&new_node)

{
…
// Recursive case
binary search on root->key array for target
let i be the correct subtree
insert (root->child[i], target, data, overflow, …);



B+Tree Insert Pseudo-Code 3
…
// Recursive case
…
insert (root->child[i], target, data, overflow, …);
if (overflow) {

?
}

}



B+Tree Insert Pseudo-Code 3
…
if (overflow) {

if (key_count<M-1) {
insert new key and child into arrays
overflow = false;
return;

} else {
create a new node and move half of the children over
overflow = true;
new_key = the key that used to be at the split;
return;

}
}



B+Tree Insert Pseudo-Code 3
…
if (overflow) {

if (key_count<M-1) {
insert new key and child into arrays
overflow = false;
return;

} else {
create a new node and move half of the children over
overflow = true;
new_key = the key that used to be at the split;
return;

}
}

This is where B+Tree
property is very handy!



B+Tree Insert:  Wrapper
• Our insert function has prototype:
void insert(btree_node *root, int target, data_type * data, bool &overflow, int &new_key, btree_node *&new_node)
• Dictionary ADT insert doesn’t!
• We’ve actually written an insert_helper.  Must write an insert function that has proper prototype.
• This insert function will also take care of creating new nodes when root splits.



Deletion

5

1 3 5 14 26 59 79

59 89

14

89

5

1 3 5 14 26 79

79 89

14

89

Delete(59)



Deletion and Adoption

5

1 3 5 14 26 79

79 89

14

89

Delete(5) ?

1 3 14 26 79

79 89

14

89

3

1 3 3 14 26 79

79 89

14

89

A leaf has too few keys!

So, borrow from a neighborP.S. Parent + neighbour 
pointers.  Expensive?
a. Definitely yes
b. Maybe yes
c. Not sure
d. Maybe no
e. Definitely no



Deletion with Propagation

3

1 3 14 26 79

79 89

14

89

Delete(3) ?

1 14 26 79

79 89

14

89

1 14 26 79

79 89

14

89

A leaf has too few keys!

And no neighbor with surplus!

So, merge
the leaves

But now a node 
has too few subtrees!

WARNING: with larger L, 
can drop below L/2 

without being empty!
(Ditto for M.)



Adopt a
neighbor

1 14 26 79

79 89

14

89

14

1 14 26 79

89

79

89

Finishing the Propagation 
(More Adoption)



Delete(1)
(adopt a

neighbor)
14

1 14 26 79

89

79

89

A Bit More Adoption

26

14 26 79

89

79

89



Delete(26)26

14 26 79

89

79

89

Pulling out the Root

14 79

89

79

89

A leaf has too few keys!
And no neighbor with surplus!

14 79

89

79

89

So, merge
the leaves

A node has too few subtrees 
and no neighbor with surplus!

14 79

79 89

89

Merge the
nodes

But now the root
has just one subtree!



Pulling out the Root (continued)

14 79

79 89

89

The root
has just one subtree!

But that’s silly!

14 79

79 89

89

Just make
the one child
the new root!

Note: The root really does only get 
deleted when it has just one subtree 
(no matter what M is).



Deletion in Two
Boring Slides of Text

• Remove the key from its leaf
• If the leaf ends up with fewer 

than L/2 items, underflow!
– Adopt data from a neighbor; 

update the parent
– If borrowing won’t work, delete 

node and divide keys between 
neighbors

– If the parent ends up with fewer 
than M/2 items, underflow!

Will dumping keys always 
work if adoption does not?
a. Yes
b. It depends
c. No



Deletion Slide Two
• If a node ends up with fewer 

than M/2 items, underflow!
– Adopt subtrees from a neighbor; 

update the parent
– If borrowing won’t work, merge 

with neighbor and update the 
parent

– If the parent ends up with fewer 
than M/2 items, underflow!

• If the root ends up with only 
one child, make that child the 
new root of the tree

This reduces the height of 
the tree!



Deletion Recursion in English 1
• This is the big picture.  We’ll have to fix some details later:
• Base Case:  If node is a leaf, search the leaf for key.

– If not found, then nothing to do.  Return.
– If found, delete the key/data from the leaf.
– Return, notifying parent if we underflowed.

• If node isn’t a leaf:
– Recurse down correct child.
– If it returns without underflow, nothing more to do.  Return.
– If child underflowed, try to borrow from child’s sibling(s).
– If that fails, merge child with a sibling.
– Return, notifying parent if we underflowed.



Deletion Recursion in English 1
• This is the big picture.  We’ll have to fix some details later:
• Base Case:  If node is a leaf, search the leaf for key.

– If not found, then nothing to do.  Return.
– If found, delete the key/data from the leaf.
– Return, notifying parent if we underflowed.

• If node isn’t a leaf:
– Recurse down correct child.
– If it returns without underflow, nothing more to do.  Return.
– If child underflowed, try to borrow from child’s sibling(s).
– If that fails, merge child with a sibling.
– Return, notifying parent if we underflowed.



Borrowing from Left Sibling
• root->key[i-1] separates root->child[i-1] from root->child[i]
• Suppose I want to borrow a key/subtree from child[i-1] for 

child[i].  How do I do this?
– Just remove from one array and insert into the other.
– But, what are the new keys???

• root->key[i-1]?
• new root->child[i]->key[0]?
• Anything else?
• (Draw this out.  Aha!  Thanks to B+Tree property, keys are there!)



Borrowing from Right Sibling
• root->key[i] separates root->child[i] from root->child[i+1]
• Suppose I want to borrow a key/subtree from child[i+1] for 

child[i].  How do I do this?
– Just remove from one array and insert into the other.
– But, what are the new keys???

• root->key[i]?
• new root->child[i]->key[key_count]?
• Anything else?
• (Draw this out.  Aha!  Thanks to B+Tree property, keys are there!)



Deletion Recursion in English 1
• This is the big picture.  We’ll have to fix some details later:
• Base Case:  If node is a leaf, search the leaf for key.

– If not found, then nothing to do.  Return.
– If found, delete the key/data from the leaf.
– Return, notifying parent if we underflowed.

• If node isn’t a leaf:
– Recurse down correct child.
– If it returns without underflow, nothing more to do.  Return.
– If child underflowed, try to borrow from child’s sibling(s).
– If that fails, merge child with a sibling.
– Return, notifying parent if we underflowed.



Merging with Left Sibling
• root->key[i-1] separates root->child[i-1] from root->child[i]
• Suppose we want to merge child[i-1] and child[i].  How do 

we do this?
– Just merge keys/children/data arrays!
– Delete root->key[i-1] from root->key[] array
– But, before you do that, use root->key[i-1] as key to separate 

largest of child[i-1]’s children from smallest of child[i]’s children.
• (Draw this out.  Aha!  Thanks to B+Tree property, keys are there!)



Merging with Right Sibling
• root->key[i] separates root->child[i] from root->child[i+1]
• Suppose we want to merge child[i] and child[i+1].  How do 

we do this?
– Just merge keys/children/data arrays!
– Delete root->key[i] from root->key[] array
– But, before you do that, use root->key[i] as key to separate largest 

of child[i]’s children from smallest of child[i+1]’s children.
• (Draw this out.  Aha!  Thanks to B+Tree property, keys are there!)



Wait!  What if smallest value is the 
one deleted?!?

• Then the B+Tree property that key[i] is smallest value in child[i+1] doesn’t hold temporarily.
• Therefore, preceding code is slightly wrong.
• Easy fix:  Have the recursive calls return the value of the smallest item in their subtree, if it changed:

– Base Case:  In a leaf, if smallest value deleted, notify parent of new smallest value.
– Recursion:  If a recursive call on my child returns a new smallest value:

• Update it’s key, if it’s not a leftmost child.
• Notify my parent that MY smallest value has changed if it was my leftmost child.



Deletion Recursion in English -- Fixed
• Base Case:  If node is a leaf, search the leaf for key.

– If not found, then nothing to do.  Return.
– If found, delete the key/data from the leaf.
– Return, notifying parent if we underflowed and new smallest value if it 

changed.
• If node isn’t a leaf:

– Recurse down correct child i.
– If child i tells me it changed smallest value, update key[i-1], or if i=0, 

save value to notify my parent that my smallest value changed.
– If it returns without underflow, nothing more to do.  Return.
– If child underflowed, try to borrow from child’s sibling(s).
– If that fails, merge child with a sibling.
– Return, notifying parent if we underflowed and new smallest value if it 

changed.



Today’s Outline
• Addressing our other problem
• B+-tree properties
• Implementing B+-tree insertion and deletion
• Some final thoughts on B+-trees



Thinking about B+Trees
• B+Tree insertion can cause (expensive) splitting 

and propagation (could we do something like 
borrowing?)

• B+Tree deletion can cause (cheap) borrowing or 
(expensive) deletion and propagation

• Propagation is rare if M and L are large   (Why?)
• Repeated insertions and deletion can cause 

thrashing
• If M = L = 128, then a B-Tree of height 4 will 

store at least 30,000,000 items



Aside:  B-Trees vs. B+Trees
• B-Trees were the original

– Closer in structure to BSTs
– Same asymptotic complexity as B+Trees

• B+Trees are more common in practice
– Leaves are typically also linked together in a linked list

• Makes it easy to do range queries
– Leaves can be optimized for storing data
– Easier to implement and explain operations

• E.g., consider general case of merging nodes during deletion



A Tree by Any Other Name
FYI:

– B-Trees with M = 3, L = x are called 2-3 trees
– B-Trees with M = 4, L = x are called 2-3-4 trees
– 2-3-4 trees are basically the same as “Red-Black trees”

Why would we ever use these?


