CPSC 221: Data Structures
B+-Trees

Alan J. Hu
(Using mainly Steve Wolfman’s Slides)



Learning Goals

After this unit, you should be able to:

Describe the structure, navigation and complexity of an order m
B-tree.

Insert and delete elements from a B+-tree, maintaining the half-
full principle.

Explain the relationship among the order of a B+-tree, the
number of nodes, and the minimum and maximum elements of
internal and external nodes.

Compare and contrast B+-trees with other data structures.

Justify why the number of I/Os becomes a more appropriate
complexity measure (than the number of operations/steps) when
dealing with larger datasets and their indexing structures (e.g.,
B+-trees).

Describe a B+-Tree and explain the difference between a B-tree

and a B+ Tree 5



B-Tree Motivation

 We’ve got balanced BSTs (e.g. AVL trees):

— QGuaranteed worst case O(log n) performance for insert,
find, delete

 We’ll get hash tables:
— Expected O(1) insert, find, delete

 Why in the world do we need another dictionary
data structure???

Answer: Because constant factors matter in practice!



Memory Hierarchy

« Computers are built with different kinds of memory,
because 1t’s 1impossibly expensive (and physically
impossible) to build all memory to be incredibly fast:

— Processor Registers: 100s of locations, <I cycle access time
— L1 Cache: 1000s of locations, a few cycles to access
— L2/L3 Cache: Millions of locations, tens of cycles to access

— Main Memory: Billions of locations, hundreds of cycles to
access

— Disk: Trillions of locations (or more), millions of cycles to
access



Coping with the Memory Hierarchy

 Wait! I can go to Future Shop and buy a 1TB disk
for less than a hundred bucks. If average seek

time 1s 10ms for a disk read, 1t should take me
about 1'TB * 10ms to read all the data off the disk.

e ] tera* 10 ms = 10 billion seconds > 300 years

 Either that disk 1s VERY slow, or your numbers
are wrong. What’s going on?

Answer: You don’t read/write one byte at a time.



Coping with the Memory Hierarchy

« At every level of the memory hierarchy, the slow
access to the lower level 1s amortized by getting a
whole bunch of data at once.

— For cache, these are called “cache lines” or “blocks™,
16, 32, 64, 128 bytes, etc. common

— For main memory, typically called “pages”, 1k, 2k, 4k,
8k, 16k, etc. common

— For disk, typically called “blocks”, 1k, 2k, 4k, 8k, etc.
common



Coping with the Memory Hierarchy

Therefore, random accesses are very slow.

Sequential access, or lots of access to a single
block of data, are much much faster.

What do hash tables do?
What do AVL trees do?



M-ary Search Tree

* Maximum branching
factor of M

e Complete tree has &)
depth = 1og,N
e Each internal node 1n a &

complete tree has
M - 1 keys

runtime:



Incomplete M-ary Search Tree ®

 Just like a binary
tree, though,
complete m-ary trees @
has m® nodes,
m + m! nodes,
m’ + m! + m? nodes,

 What about numbers
in between??



B-Trees

B-Trees are specialized M-ary search
trees

Each node has many keys

— subtree between two keys x and y
contains values v such that x <v <y

— binary search within a node

to find correct subtree

Each node takes one
full {page, block, line

x<3 3<x<7 T<x<12 2<x<2 21x

of memory
ALL the leaves are at the same depth!



Today’s Outline

B-tree motivation
B+-tree properties
Implementing B+-tree insertion and deletion

Some final thoughts on B+-trees



B+Tree Properties

* Properties
— maximum branching factor of M
— the root has between 2 and M children or at most L keys/values
— other internal nodes have between | M/2 | and M children
— 1nternal nodes contain only search keys (no data)
— smallest datum between search keys x and y equals x
— each (non-root) leaf contains between | L/2 | and L keys/values

— all leaves are at the same depth

* Result
— tree 1s ® (log,, n) deep (between 1logy,, n and logy n)
— all operations run in ® (log,, n) time

— operations get about M/2 toMor L/2 to L items at a time
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— maximum branching factor of M
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Aside: B-Tree Properties

* Properties
— maximum branching factor of M
— the root has between 2 and M children or at most L keys/values
— other internal nodes have between | M/2 | and M children
~internal 10 only search keys (n ) —

— each (non-root) leaf contains between [2/2]and L keys/values

— all leaves are at the same depth

e Result
— tree 1s ® (log,, n) deep (between 1logy,, n and logy n)
— all operations run in ® (log,, n) time

— operations get about M/2 toMor L/2 to L items at a time



Aside: B-Tree Properties

* Properties
— maximum branching factor of M
— the root has between 2 and M children or at most L keys/values
— other internal nodes have between | M/2 | and M children
— internal nodes do contain data | Just like BSTs!

— data 1n subtrees between keys x and y strictly between x and y
— each (non-root) leaf contains between [2/2]and L keys/values
— all leaves are at the same depth

e Result
— tree 1s ® (log,, n) deep (between 1logy,, n and logy n)
— all operations run in ® (log,, n) time

— operations get about M/2 toMor L/2 to L items at a time



Today’s Outline

Addressing our other problem

B+-tree properties

Implementing B+-tree insertion and deletion
Some final thoughts on B+-trees



B+Tree Nodes

e Internal node
i search keys; i+1 children; M — 1 -i 1nactive keys

kl k2 o060 ki o ) o
1 2 \ i M -
e Leaf

j data keys; L - 3 inactive entries

kl k2 'Y X ](J o LN J

1 2 3



Alan’s Aside: B+Tree Nodes

struct btree node {
bool 1s_leaf;
int key count;
int key[max(M-1, L)]; // some key type in reality
int child count;
union { // uses same memory space

btree node *child[M]; child[i] between
data type *leaf data[L]; key[i-1] and key[i]




Alan’s Aside: B+Tree Nodes

struct btree node {
bool 1s_leaf;
int key count;
int key[max(M-1, L)]; // some key type 1n reality
int child count;
union { // uses same memory space
btree node *child[M]; child[i] between

data type *leaf data[L]; key[i-1] and keyf[i]

The smallest key in subtree rooted at
| child[i] is exactly equal to key[i-1]




Example

B+Tree with M = 4

and L = 4
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E.

Notice 1n these pictures that we are

_ drawing the keys, but not the pointers,
B+Tree with M = 4 | there are 3 boxes, but M=4

3 152030 50




B+Tree Find Pseudo-Code

data type * find(btree node *root, int target) {

if (root->1s leaf) {
binary search on root->key array for target
if (found at location 1) return root->leaf data[1];
else return null;

h

binary search on root->key array for target

let 1 be the correct subtree

return find(root->child[1], target)

h



Making a B+Tree

Insert(3) Insert(14)

The empty
B+Tree

M=31L-=2

B-Tree with M = 3 Now, Insert(1)?

and L = 2



14

Splitting the Root

Insert(l)

Too many
keys 1n a leaf!

So, split the leaf,

1

3

ceapeed

And create )

14

14

a new root

14




Insertions and Split Ends

14

Insert(59) |

3| (14

Too many

keys 1n a leaf!

14
14
26) | N . |
Insert(26) 5137 [ahelss:
a0 12017
14{26| |59
So, split the leaf,
14|59
And add
Y a new child
31114/26||59




Insertions and Split Ends 16 many

keys 1n a leaf!

14
14 14
Insert(59) Insert(26) 1131 Tal2655:
1]3] 14 1]3] [14]59 S
14|26| |59
So, split the leaf,
Alan’s Aside:
[ Flon t really like this 14159
picture. Leaves are ] And add
always at same level. v ) a new child
Tree grows from the 113 J14]26]159
root!




Propagating Splits

So, split the node.

14/59
14|59
14)26] [59 S child
113]]5
Too many keys in an internal node!
14 ........
------- S [14[595 .
5 59 . Createa 5 ‘ \59' .
new root
5 14(26|(59 1135 14(26]| |59




After More Routine Inserts

14
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Insert(89)
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26(|59

Insert(79)
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59(89

14

26

59(79

39




Insertion 1n Boring Text

* Insert the key 1n its leaf  If an internal node ends up
e If the leaf ends up with L+1 with M+1 items, overflow!
items, overflow! — Split the node into two nodes:

 original with |_(M-I-1) /2 |items

— Split the leaf into two nodes:
* new one with | (M+1) / 2 | items

 original with |_(L+1) /2 |items
« new one with | (Z+1) /2] items — Add the new child to the parent

— Add the new child to the parent — (If the parent ends up with M+1

. 1 '
— (If the parent ends up with M+1 items, overflow!)
items, overflow!)

e Split an overflowed root in two
and hang the new nodes under
/ a new root

This makes the tree deeper!



Insertion Recursion 1n English

« Ifkey 1s in my key array, return. It’s already in the dictionary.

e [f this node 1s a leaf,
— 1nsert the new key/data into the leaf.
— If'the leaf is too big, split into two leaves, and return, notifying my parent of
the overflow, the new leaf, and the key value for the new leaf.
e [f this node 1s not a leaf,
— recurse down the correct child.
— If the child returns no overflow, then just return.
— If the child returns overflow, then insert new key/child into my arrays.

— If preceding step makes me overflow, split myself into two nodes, and return,
notifying my parents of the overflow, the new node, and key value for new
node.



B+Tree Insert Pseudo-Code

void insert(btree_node *root, int target, data_type * data,
bool &overflow, int &new_key, btree node *&new node)
{
// Assuming no duplicate keys inserted...
if (root->1s_leaf) {
if (child count<L) {
insert new key and data into arrays
overflow = false;

return,;

} else {
create a new node and move half of keys/data over
overflow = true; new_key = smallest key of new node;
return,;

h



B+Tree Insert Pseudo-Code 2

void insert(btree node *root, int target, data type * data,

bool &overflow, int &new key, btree node
*&new node)

d

// Recursive case
binary search on root->key array for target
let 1 be the correct subtree

insert (root->child[1], target, data, overtlow, ...);



B+Tree Insert Pseudo-Code 3

// Recursive case

insert (root->child[1], target, data, overtlow, ...);

if (overtlow) {
?



B+Tree Insert Pseudo-Code 3

if (overflow) {
if (key count<M-1) {
insert new key and child into arrays
overflow = false;
return;

} else {
create a new node and move half of the children over

overflow = true;
new_key = the key that used to be at the split;

return;



B+Tree Insert Pseudo-Code 3

if (overflow) {
if (key count<M-1) {
insert new key and child into arrays
overflow = false;
return;

} else {
create a new node and move half of the children over

overflow = true;
new key = the key that used to be at the split;

return;

This 1s where B+Tree
property 1s very handy!




B+T1ree Insert: Wrapper

* Our 1nsert function has prototype:

void 1nsert(btree node *root, int target, data type *
data, bool &overtlow, int &new key, btree node
*&new node)

e Dictionary ADT 1nsert doesn’t!

 We’ve actually written an insert helper. Must
write an 1nsert function that has proper prototype.

* This msert function will also take care of creating
new nodes when root splits.



Deletion
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Delete(59)
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Deletion and Adoption

A leaf has too few keys!

14 14

Delete(5) |

113(|S 14)26(|79] |89 1|3 14)26(|79] |89

So, borrow from a neighbor

P.S. Parent + neighbour
pointers. Expensive? 14
Definitely yes
Maybe yes

Not sure

Maybe no |
Definitely no 1 ||3 14126|79] |89

© po o




Deletion with Propagation

A leaf has too few keys!

14 14

Delete(3) |

3 79189 ? 79189

1 3 14)26(|79] |89 1 14)26(|79] |89

And no neighbor with surplus!
But now a node

has too few subtrees!

14
WARNING: with larger L,
So, merge
can drop below L/2 79/89 «
. . the leaves
without being empty!
(D1tto for M.) 1 TahelFol 1i89




Finishing the Propagation

(More Adoption)
14 79
79|89 AflOpt 1, 14 89
neighbor Pl
14|26 79' 89 14126(|79] |[|89




A Bit More Adoption

14

79

89

Delete(1)
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(adopt a
neighbor)
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Pulling out the Root

A leaf has too few keys!
And no neighbor with surplus!
79 79
Delete(26 So, merge
26 89 ( )= 89 : £
the leaves
14 26 790 |89 14 790 |89
But now the root A node has too few subtrees
has just one subtree! and no neighbor with surplus!
79
Merge the
79189 ¢ nodes 89 <
Y
14 79! |(89 14 790 |89




Pulling out the Root (continued)

The root
has just one subtree!
Just make

the one child
v
~9I89 the new root!

14 79 89

But that’s silly!

Note: The root really does only get
deleted when it has just one subtree
(no matter what M 1s).

79

89

14

79

39




Deletion in 7wo
Boring Slides of Text

 Remove the key from its leaf

 If the leaf ends up with fewer
than [ £/2 ] items, underflow!

— Adopt data from a neighbor;

update the parent . .

— If borrowing won’t work, delete Will d.umpmg. keys always
node and divide keys between work 1f adoption does not?
neighbors a. Yes

— If the parent ends up with fewer b. It depends

than [ M/2 | items, underflow! c. No



Deletion Slide Two

If a node ends up with fewer
than [ M/2 ] items, underflow!
— Adopt subtrees from a neighbor;
update the parent

— If borrowing won’t work, merge
with neighbor and update the
parent

— If the parent ends up with fewer
than [ M/2 | items, underflow!

: This reduces the height of
If the root ends up with only f the tree!
one child, make that child the '

new root of the tree




Deletion Recursion in English 1

* This 1s the big picture. We’ll have to fix some details
later:

* Base Case: If node is a leaf, search the leaf for key.
— If not found, then nothing to do. Return.
— If found, delete the key/data from the leaf.
— Return, notifying parent if we underflowed.

e Ifnode 1sn’t a leaf:
— Recurse down correct child.
— If it returns without underflow, nothing more to do. Return.
— If child underflowed, try to borrow from child’s sibling(s).
— If that fails, merge child with a sibling.
— Return, notifying parent if we underflowed.
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* This 1s the big picture. We’ll have to fix some details
later:

* Base Case: If node is a leaf, search the leaf for key.
— If not found, then nothing to do. Return.
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Borrowing from Left Sibling

e root->key[1-1] separates root->child[1-1] from root->child[1]

* Suppose I want to borrow a key/subtree from child[i1-1] for
child[1]. How do I do this?

— Just remove from one array and insert into the other.

— But, what are the new keys???
 root->key[i-1]?
* new root->child[i]->key[0]?
* Anything else?
* (Draw this out. Aha! Thanks to B+Tree property, keys are there!)



Borrowing from Right Sibling

* root->key[1] separates root->child[1] from root->child[i1+1]

* Suppose I want to borrow a key/subtree from child[1+1] for
child[1]. How do I do this?

— Just remove from one array and insert into the other.

— But, what are the new keys???
* root->key[i]?
« new root->child[i]->key[key count]?
* Anything else?
* (Draw this out. Aha! Thanks to B+Tree property, keys are there!)



Deletion Recursion in English 1

* This 1s the big picture. We’ll have to fix some details
later:

* Base Case: If node is a leaf, search the leaf for key.
— If not found, then nothing to do. Return.
— If found, delete the key/data from the leaf.
— Return, notifying parent if we underflowed.

e Ifnode 1sn’t a leaf:
— Recurse down correct child.
— If it returns without underflow, nothing more to do. Return.
— If child underflowed, try to borrow from child’s sibling(s).
— If that fails] merge child with a sibling.
— Return, notifying parent if we underflowed.




Merging with Left Sibling

e root->key[1-1] separates root->child[1-1] from root->child[1]

e Suppose we want to merge child[1-1] and child[1]. How do
we do this?
— Just merge keys/children/data arrays!
— Delete root->key[1-1] from root->key[] array

— But, before you do that, use root->key[1-1] as key to separate
largest of child[i-1]’s children from smallest of child[1]’s children.
* (Draw this out. Aha! Thanks to B+Tree property, keys are there!)



Merging with Right Sibling

* root->key[1] separates root->child[1] from root->child[i1+1]

* Suppose we want to merge child[1] and child[1+1]. How do
we do this?
— Just merge keys/children/data arrays!
— Delete root->key[1] from root->key[] array

— But, before you do that, use root->key[1] as key to separate largest
of child[1]’s children from smallest of child[1+1]’s children.
* (Draw this out. Aha! Thanks to B+Tree property, keys are there!)



Wait! What 1t smallest value 1s the

one deleted?!?

Then the B+Tree property that key[1] 1s smallest value
in child[1+1] doesn’t hold temporarily.

Therefore, preceding code 1s slightly wrong.

Easy fix: Have the recursive calls return the value of
the smallest 1item 1n their subtree, 1f 1t changed:

— Base Case: In a leaf, if smallest value deleted, notify parent of
new smallest value.

— Recursion: If a recursive call on my child returns a new
smallest value:
« Update it’s key, if it’s not a leftmost child.

« Notify my parent that MY smallest value has changed if it was my
leftmost child.



Deletion Recursion in English -- Fixed

« Base Case: If node 1s a leaf, search the leaf for key.
— If not found, then nothing to do. Return.
— If found, delete the key/data from the leaf.
— Return, notifying parent if we underflowed and new smallest value if it
changed.
e Ifnode isn’t a leaf:
— Recurse down correct child 1.

— If child i tells me it changed smallest value, update key[i-1], or if i=0,
save value to notify my parent that my smallest value changed.

— If it returns without underflow, nothing more to do. Return.
— If child underflowed, try to borrow from child’s sibling(s).
— If that fails, merge child with a sibling.

— Return, notifying parent if we underflowed and new smallest value if it
changed.



Today’s Outline

Addressing our other problem
B+-tree properties
Implementing B+-tree insertion and deletion

Some final thoughts on B+-trees



Thinking about B+Trees

B+Tree 1nsertion can cause (expensive) splitting
and propagation (could we do something like
borrowing?)

B+Tree deletion can cause (cheap) borrowing or
(expensive) deletion and propagation
Propagation 1s rare if Mand L are large (Why?)
Repeated insertions and deletion can cause
thrashing

IfM = L = 128, then a B-Tree of height 4 will
store at least 30,000,000 1tems



Aside: B-Trees vs. B+Trees

* B-Trees were the original
— Closer 1n structure to BSTs
— Same asymptotic complexity as B+Trees

 B+Trees are more common 1n practice

— Leaves are typically also linked together in a linked list
» Makes it easy to do range queries

— Leaves can be optimized for storing data

— Easier to implement and explain operations

* E.g., consider general case of merging nodes during deletion



A Tree by Any Other Name

FYI:
— B-TreeswithM = 3, L = x are called 2-3 trees
— B-TreeswithM = 4, L = x are called 2-3-4 trees

— 2-3-4 trees are basically the same as “Red-Black trees”

Why would we ever use these?



