CPSC 221: Data Structures B+-Trees

Alan J. Hu
(Using mainly Steve Wolfman's Slides)

Learning Goals

After this unit, you should be able to:

- Describe the structure, navigation and complexity of an order m B-tree.
- Insert and delete elements from a B+-tree, maintaining the halffull principle.
- Explain the relationship among the order of a B+-tree, the number of nodes, and the minimum and maximum elements of internal and external nodes.
- Compare and contrast B+-trees with other data structures.
- Justify why the number of I/Os becomes a more appropriate complexity measure (than the number of operations/steps) when dealing with larger datasets and their indexing structures (e.g., B+-trees).
- Describe a B+-Tree and explain the difference between a B-tree and a B+ Tree

B-Tree Motivation

- We've got balanced BSTs (e.g. AVL trees):
- Guaranteed worst case $\mathrm{O}(\log n)$ performance for insert, find, delete
- We'll get hash tables:
- Expected O(1) insert, find, delete
- Why in the world do we need another dictionary data structure???
Answer: Because constant factors matter in practice!

Memory Hierarchy

- Computers are built with different kinds of memory, because it's impossibly expensive (and physically impossible) to build all memory to be incredibly fast:
- Processor Registers: 100s of locations, <1 cycle access time
- L1 Cache: 1000s of locations, a few cycles to access
- L2/L3 Cache: Millions of locations, tens of cycles to access
- Main Memory: Billions of locations, hundreds of cycles to access
- Disk: Trillions of locations (or more), millions of cycles to access

Coping with the Memory Hierarchy

- Wait! I can go to Future Shop and buy a 1 TB disk for less than a hundred bucks. If average seek time is 10 ms for a disk read, it should take me about $1 \mathrm{~TB} * 10 \mathrm{~ms}$ to read all the data off the disk.
- 1 tera * $10 \mathrm{~ms}=10$ billion seconds >300 years
- Either that disk is VERY slow, or your numbers are wrong. What's going on?
Answer: You don't read/write one byte at a time.

Coping with the Memory Hierarchy

- At every level of the memory hierarchy, the slow access to the lower level is amortized by getting a whole bunch of data at once.
- For cache, these are called "cache lines" or "blocks", $16,32,64,128$ bytes, etc. common
- For main memory, typically called "pages", 1k, 2k, 4k, 8k, 16k, etc. common
- For disk, typically called "blocks", $1 \mathrm{k}, 2 \mathrm{k}, 4 \mathrm{k}, 8 \mathrm{k}$, etc. common

Coping with the Memory Hierarchy

- Therefore, random accesses are very slow.
- Sequential access, or lots of access to a single block of data, are much much faster.
- What do hash tables do?
- What do AVL trees do?

M-ary Search Tree

- Maximum branching factor of M
- Complete tree has depth $=\log _{M} N$
- Each internal node in a complete tree has

m - 1 keys
runtime:

Incomplete M-ary Search Tree $:($

- Just like a binary tree, though, complete m-ary trees has m^{0} nodes, $\mathrm{m}^{0}+\mathrm{m}^{1}$ nodes, $\mathrm{m}^{0}+\mathrm{m}^{1}+\mathrm{m}^{2}$ nodes,

- What about numbers in between??

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys
- subtree between two keys x and y contains values v such that $x \leq v<y$
- binary search within a node to find correct subtree
- Each node takes one full \{page, block, line $\}_{x<3}$ of memory
- ALL the leaves are at the same depth!

Today's Outline

- B-tree motivation
- $\mathrm{B}+$-tree properties
- Implementing B+-tree insertion and deletion
- Some final thoughts on B+-trees

B+Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys/values
- other internal nodes have between $\lceil\boldsymbol{M} / 2\rceil$ and \boldsymbol{M} children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys/values
- all leaves are at the same depth
- Result
- tree is $\Theta\left(\log _{M} \mathrm{n}\right)$ deep (between $\log _{\mathrm{M} / 2} \mathrm{n}$ and $\log _{M} \mathrm{n}$)
- all operations run in $\Theta\left(\log _{M} \mathrm{n}\right)$ time
- operations get about $M / 2$ to M or $L / 2$ to L items at a time

B+Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys/values
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys/values
- all leaves are at the same depth
- Result
- tree is $\Theta\left(\log _{M} \mathrm{n}\right)$ deep (between $\log _{\mathrm{M} / 2} \mathrm{n}$ and $\log _{M} \mathrm{n}$)
- all operations run in $\Theta\left(\log _{M} \mathrm{n}\right)$ time
- operations get about $M / 2$ to M or $L / 2$ to L items at a time

B+Tree Properties

- Properties
- maximum branching factor of \boldsymbol{M}
- the root has between 2 and \boldsymbol{M} children or at most L keys/values
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys/values
- all leaves are at the same depth
- Result
- tree is $\Theta\left(\log _{M} \mathrm{n}\right)$ deep (between $\log _{M / 2} \mathrm{n}$ and $\log _{M} \mathrm{n}$)
- all operations run in $\Theta\left(\log _{M} \mathrm{n}\right)$ time
- operations get about $M / 2$ to M or $L / 2$ to L items at a time

B+Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys/values
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys/values
- all leaves are at the same depth
- Result
- tree is $\Theta\left(\log _{M} \mathrm{n}\right)$ deep (between $\log _{M / 2} \mathrm{n}$ and $\log _{M} \mathrm{n}$)
- all operations run in $\Theta\left(\log _{M} \mathrm{n}\right)$ time
- operations get about $M / 2$ to M or $L / 2$ to L items at a time

Aside: B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys/values
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal node contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys/values
- all leaves are at the same depth
- Result
- tree is $\Theta\left(\log _{M} \mathrm{n}\right)$ deep (between $\log _{M / 2} \mathrm{n}$ and $\log _{M} \mathrm{n}$)
- all operations run in $\Theta\left(\log _{M} \mathrm{n}\right)$ time
- operations get about $M / 2$ to M or $L / 2$ to L items at a time

Aside: B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys/values
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes do contain data Just like BSTs!
- data in subtrees between keys x and y strictly between x and y
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys/values
- all leaves are at the same depth
- Result
- tree is $\Theta\left(\log _{M} \mathrm{n}\right)$ deep (between $\log _{M / 2} \mathrm{n}$ and $\log _{M} \mathrm{n}$)
- all operations run in $\Theta\left(\log _{M} \mathrm{n}\right)$ time
- operations get about $M / 2$ to M or $L / 2$ to L items at a time

Today's Outline

- Addressing our other problem
- $\mathrm{B}+$-tree properties
- Implementing $\mathrm{B}+$-tree insertion and deletion
- Some final thoughts on B+-trees

B+Tree Nodes

- Internal node
i search keys; i+1 children; \boldsymbol{M} - 1 -i inactive keys

- Leaf
j data keys; L - j inactive entries

Alan's Aside: B+Tree Nodes

struct btree_node \{
bool is_leaf;
int key_count;
int key[max(M-1, L)]; // some key_type in reality int child_count;
union \{ // uses same memory space btree_node *child[M]; data_type *leaf_data[L];

Alan's Aside: B+Tree Nodes

struct btree_node \{
bool is_leaf;
int key_count;
int key[max(M-1, L)]; // some key_type in reality int child_count;
union \{ // uses same memory space btree_node *child[M]; data_type *leaf_data[L];

Example

Example

Notice in these pictures that we are drawing the keys, but not the pointers, so there are 3 boxes, but $\mathrm{M}=4$

B+Tree Find Pseudo-Code

data_type * find(btree_node *root, int target) \{ if (root->is_leaf) \{
binary search on root->key array for target if (found at location i) return root->leaf_data[i]; else return null;
\}
binary search on root->key array for target let i be the correct subtree return find(root->child[i], target)

Making a B+Tree

B-Tree with $\boldsymbol{M}=3$
Now, Insert(1)?
and $L=2$

Splitting the Root

Insertions and Split Ends

Too many keys in a leaf!

	$14{ }^{\circ} 26 \quad 5$

So, split the leaf.

Insertions and Split Ends

Too many keys in a leaf!

Alan's Aside:
I don't really like this picture. Leaves are always at same level. Tree grows from the root!

Propagating Splits

Too many keys in an internal node!

So, split the node.

After More Routine Inserts

\author{

$\operatorname{Insert}(89)$
$\operatorname{Insert}(79)$

}

Insertion in Boring Text

- Insert the key in its leaf
- If the leaf ends up with $\mathrm{L}+1$ items, overflow!
- Split the leaf into two nodes:
- original with $\lceil(L+1) / 2\rceil$ items
- new one with $\lfloor(L+1) / 2\rfloor$ items
- Add the new child to the parent
- (If the parent ends up with $M+1$ items, overflow!)
- If an internal node ends up with $\mathrm{M}+1$ items, overflow!
- Split the node into two nodes:
- original with $\lceil(M+1) / 2\rceil$ items
- new one with $\lfloor(M+1) / 2\rfloor$ items
- Add the new child to the parent
- (If the parent ends up with $\boldsymbol{M + 1}$ items, overflow!)
- Split an overflowed root in two and hang the new nodes under a new root

Insertion Recursion in English

- If key is in my key array, return. It's already in the dictionary.
- If this node is a leaf,
- insert the new key/data into the leaf.
- If the leaf is too big, split into two leaves, and return, notifying my parent of the overflow, the new leaf, and the key value for the new leaf.
- If this node is not a leaf,
- recurse down the correct child.
- If the child returns no overflow, then just return.
- If the child returns overflow, then insert new key/child into my arrays.
- If preceding step makes me overflow, split myself into two nodes, and return, notifying my parents of the overflow, the new node, and key value for new node.

B+Tree Insert Pseudo-Code

void insert(btree_node *root, int target, data_type * data, bool \&overflow, int \&new_key, btree_node *\&new_node)
$\{$

```
// Assuming no duplicate keys inserted...
if (root->is_leaf) {
    if(child_count<L) {
            insert new key and data into arrays
            overflow = false;
            return;
        } else {
        create a new node and move half of keys/data over
        overflow = true; new_key = smallest key of new node;
        return;
    }
}
```


B+Tree Insert Pseudo-Code 2

void insert(btree_node *root, int target, data_type * data, bool \&overflow, int \&new_key, btree_node *\&new_node)
// Recursive case binary search on root->key array for target let i be the correct subtree insert (root->child[i], target, data, overflow, ...);

B+Tree Insert Pseudo-Code 3

// Recursive case insert (root->child[i], target, data, overflow, ...); if (overflow) \{
?
\}
\}

B+Tree Insert Pseudo-Code 3

```
if (overflow) {
    if (key_count<M-1) {
                insert new key and child into arrays
                overflow = false;
                return;
    } else {
                                    create a new node and move half of the children over
                                    overflow = true;
                            new_key = the key that used to be at the split;
    return;
    }
}
```


B+Tree Insert Pseudo-Code 3

```
if (overflow) {
    if (key_count<M-1) {
                insert new key and child into arrays
                overflow = false;
            return;
    } else {
                                    create a new node and move half of the children over
                                    overflow = true;
                            new_key = the key that used to be at the split;
                        return;
    }
}
\[
\begin{aligned}
& \text { This is where B+Tree } \\
& \text { property is very handy! }
\end{aligned}
\]
```


B+Tree Insert: Wrapper

- Our insert function has prototype:
void insert(btree_node *root, int target, data_type * data, bool \&overflow, int \&new_key, btree_node *\&new_node)
- Dictionary ADT insert doesn't!
- We've actually written an insert_helper. Must write an insert function that has proper prototype.
- This insert function will also take care of creating new nodes when root splits.

Deletion

Deletion and Adoption

A leaf has too few keys!

P.S. Parent + neighbour pointers. Expensive?
a. Definitely yes
b. Maybe yes
c. Not sure
d. Maybe no
e. Definitely no

So, borrow from a neighbor

Deletion with Propagation

But now a node has too few subtrees!

WARNING: with larger L, can drop below L/2 without being empty! (Ditto for M.)

Finishing the Propagation (More Adoption)

A Bit More Adoption

Pulling out the Root

A leaf has too few keys!
And no neighbor with surplus!

Delete(26)

So, merge the leaves

But now the root has just one subtree!

A node has too few subtrees and no neighbor with surplus!

Pulling out the Root (continued)

The root
has just one subtree!

But that's silly!

Just make the one child the new root!

Note: The root really does only get deleted when it has just one subtree (no matter what M is).

Deletion in Two Boring Slides of Text

- Remove the key from its leaf
- If the leaf ends up with fewer than $\lceil L / 2\rceil$ items, underflow!
- Adopt data from a neighbor; update the parent
- If borrowing won't work, delete node and divide keys between neighbors
- If the parent ends up with fewer than $\lceil\mathbf{M} / 2\rceil$ items, underflow!

Will dumping keys always work if adoption does not?
a. Yes
b. It depends
c. No

Deletion Slide Two

- If a node ends up with fewer than $\lceil M / 2\rceil$ items, underflow!
- Adopt subtrees from a neighbor; update the parent
- If borrowing won't work, merge with neighbor and update the parent
- If the parent ends up with fewer than $\lceil\mathbf{M} / 2\rceil$ items, underflow!
- If the root ends up with only one child, make that child the new root of the tree

This reduces the height of the tree!

Deletion Recursion in English 1

- This is the big picture. We'll have to fix some details later:
- Base Case: If node is a leaf, search the leaf for key.
- If not found, then nothing to do. Return.
- If found, delete the key/data from the leaf.
- Return, notifying parent if we underflowed.
- If node isn't a leaf:
- Recurse down correct child.
- If it returns without underflow, nothing more to do. Return.
- If child underflowed, try to borrow from child's sibling(s).
- If that fails, merge child with a sibling.
- Return, notifying parent if we underflowed.

Deletion Recursion in English 1

- This is the big picture. We'll have to fix some details later:
- Base Case: If node is a leaf, search the leaf for key.
- If not found, then nothing to do. Return.
- If found, delete the key/data from the leaf.
- Return, notifying parent if we underflowed.
- If node isn't a leaf:
- Recurse down correct child.
- If it returns without underflow, nothing more to do. Return.
- If child underflowed, try to borrow from child's sibling(s).
- If that fails, merge child with a sibling.
- Return, notifying parent if we underflowed.

Borrowing from Left Sibling

- root->key[i-1] separates root->child[i-1] from root->child[i]
- Suppose I want to borrow a key/subtree from child[i-1] for child[i]. How do I do this?
- Just remove from one array and insert into the other.
- But, what are the new keys???
- root->key[i-1]?
- new root->child[i]->key[0]?
- Anything else?
- (Draw this out. Aha! Thanks to B+Tree property, keys are there!)

Borrowing from Right Sibling

- root->key[i] separates root->child[i] from root->child[i+1]
- Suppose I want to borrow a key/subtree from child[i+1] for child[i]. How do I do this?
- Just remove from one array and insert into the other.
- But, what are the new keys???
- root->key[i]?
- new root->child[i]->key[key_count]?
- Anything else?
- (Draw this out. Aha! Thanks to B+Tree property, keys are there!)

Deletion Recursion in English 1

- This is the big picture. We'll have to fix some details later:
- Base Case: If node is a leaf, search the leaf for key.
- If not found, then nothing to do. Return.
- If found, delete the key/data from the leaf.
- Return, notifying parent if we underflowed.
- If node isn't a leaf:
- Recurse down correct child.
- If it returns without underflow, nothing more to do. Return.
- If child underflowed, try to borrow from child's sibling(s).
- If that fails merge child with a sibling.
- Return, notifying parent if we underflowed.

Merging with Left Sibling

- root->key[i-1] separates root->child[i-1] from root->child[i]
- Suppose we want to merge child[i-1] and child[i]. How do we do this?
- Just merge keys/children/data arrays!
- Delete root->key[i-1] from root->key[] array
- But, before you do that, use root->key[i-1] as key to separate largest of child[i-1]'s children from smallest of child[i]'s children.
- (Draw this out. Aha! Thanks to B+Tree property, keys are there!)

Merging with Right Sibling

- root->key[i] separates root->child[i] from root->child[i+1]
- Suppose we want to merge child[i] and child[i+1]. How do we do this?
- Just merge keys/children/data arrays!
- Delete root->key[i] from root->key[] array
- But, before you do that, use root->key[i] as key to separate largest of child[i]'s children from smallest of child[$i+1$]'s children.
- (Draw this out. Aha! Thanks to B+Tree property, keys are there!)

Wait! What if smallest value is the one deleted?!?

- Then the $\mathrm{B}+$ Tree property that key[i] is smallest value in child[$[1+1]$ doesn't hold temporarily.
- Therefore, preceding code is slightly wrong.
- Easy fix: Have the recursive calls return the value of the smallest item in their subtree, if it changed:
- Base Case: In a leaf, if smallest value deleted, notify parent of new smallest value.
- Recursion: If a recursive call on my child returns a new smallest value:
- Update it's key, if it's not a leftmost child.
- Notify my parent that MY smallest value has changed if it was my leftmost child.

Deletion Recursion in English -- Fixed

- Base Case: If node is a leaf, search the leaf for key.
- If not found, then nothing to do. Return.
- If found, delete the key/data from the leaf.
- Return, notifying parent if we underflowed and new smallest value if it changed.
- If node isn't a leaf:
- Recurse down correct child i.
- If child i tells me it changed smallest value, update key[i-1], or if $i=0$, save value to notify my parent that my smallest value changed.
- If it returns without underflow, nothing more to do. Return.
- If child underflowed, try to borrow from child's sibling(s).
- If that fails, merge child with a sibling.
- Return, notifying parent if we underflowed and new smallest value if it changed.

Today's Outline

- Addressing our other problem
- B+-tree properties
- Implementing $\mathrm{B}+$-tree insertion and deletion
- Some final thoughts on $\mathrm{B}+$-trees

Thinking about $\mathrm{B}+$ Trees

- $\mathrm{B}+$ Tree insertion can cause (expensive) splitting and propagation (could we do something like borrowing?)
- B+Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if \boldsymbol{M} and \boldsymbol{L} are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If $M=L=128$, then a B-Tree of height 4 will store at least $30,000,000$ items

Aside: B-Trees vs. B+Trees

- B-Trees were the original
- Closer in structure to BSTs
- Same asymptotic complexity as B+Trees
- $\mathrm{B}+$ Trees are more common in practice
- Leaves are typically also linked together in a linked list
- Makes it easy to do range queries
- Leaves can be optimized for storing data
- Easier to implement and explain operations
- E.g., consider general case of merging nodes during deletion

A Tree by Any Other Name

FYI:

- B-Trees with $\boldsymbol{M}=3, \boldsymbol{L}=\mathbf{x}$ are called 2-3 trees
- B-Trees with $\boldsymbol{M}=\mathbf{4}, L=\mathbf{x}$ are called 2-3-4 trees
- 2-3-4 trees are basically the same as "Red-Black trees"

Why would we ever use these?

