
CPSC 221: Data Structures
Graph Theory

Alan J. Hu
(Many slides gratefully stolen from Steve Wolfman)



Learning Goals
After this unit, you should be able to:
• Describe the properties and possible applications of various kinds of graphs (e.g., simple, complete), and the relationships among vertices, edges, and degrees.
• Prove basic theorems about simple graphs (e.g. handshaking theorem).
• Convert between adjacency matrices/lists and their corresponding graphs.
• Determine whether two graphs are isomorphic.
• Determine whether a given graph is a subgraph of another.
• Perform breadth-first and depth-first searches in graphs.
• Explain why graph traversals are more complicated than tree traversals.
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Graphs and Graph Theory
• (These are not the sorts of graphs you’ve seen in 

algebra class!)
• Graphs are a really powerful formalism to model 

the relationships between things.
• There are many variations of graphs.  We’ll study 

several common varieties.



Graph Examples
• Graphs are a really powerful formalism to model the relationships between things.

– Things can be whatever you want.  Relationships can be any relation that makes sense on those things.
• Examples:

– Cities, highways; intersections, streets; airports, flights; etc.
– webpages, links; Facebook ids, friends; computers, network connections; etc.
– Tasks, dependencies; variables, data flow; statements, control flow;



Drawing Graphs
• We draw graphs with circles or dots for the things (called 

vertices, or nodes) and lines or arrows for the 
relationships (called edges, or arcs).
– Vertices usually labeled.
– Edges can be labeled, too.

• Examples:
– Cities, highways; intersections, streets; airports, flights; etc.
– webpages, links; Facebook ids, friends; computers, network 

connections; etc.
– Tasks, dependencies; variables, data flow; statements, control 

flow; etc.



Graph ADT
Graphs are a formalism useful for representing 

relationships between things
– a graph G is represented as 
G = (V, E)
• V is a  set of vertices: {v1, v2, …, vn}
• E is a set of edges: {e1, e2, …, em} where 

each ei connects two vertices (vi1, vi2)
– operations might include:

• creation (with a certain number of vertices)
• inserting/removing edges
• iterating over vertices adjacent to a specific vertex
• asking whether an edge exists connecting two vertices

Han

Leia
Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia), 

(Han, Leia), 
(Leia, Han)}
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Today’s Outline
• Topological Sort: Getting to Know Graphs with a Sort
• Graph ADT and Graph Representations
• Graph Terminology (a lot of it!)
• More Graph Algorithms

– Shortest Path (Dijkstra’s Algorithm)
– Minimum Spanning Tree (Kruskal’s Algorithm)
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Total Order
1

2
3

4
5

6
7A B means A must go before B



Partial Order: Getting Dressed

socks
shirt

shoes

pants

watch
belt

coat
under
roos



Topological Sort
Given a graph, G = (V, E), output all the vertices 

in V such that no vertex is output before any other 
vertex with an edge to it.



Topo-Sort Take One
Label each vertex’s in-degree (# of inbound edges)
While there are vertices remaining

Pick a vertex with in-degree of zero and output it
Reduce the in-degree of all vertices adjacent to it
Remove it from the list of vertices

runtime:



Topo-Sort Take Two
Label each vertex’s in-degree
Initialize a queue to contain all in-degree zero vertices
While there are vertices remaining in the queue

Pick a vertex v with in-degree of zero and output it
Reduce the in-degree of all vertices adjacent to v
Put any of these with new in-degree zero on the queue
Remove v from the queue

runtime:



Today’s Outline
• Topological Sort: Getting to Know Graphs with a Sort
• Graph ADT and Graph Representations
• Graph Terminology (a lot of it!)
• More Graph Algorithms

– Shortest Path (Dijkstra’s Algorithm)
– Minimum Spanning Tree (Kruskal’s Algorithm)
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Graph Representations

• 2-D matrix of vertices (marking edges in the cells)
“adjacency matrix”

• List of vertices each with a list of adjacent vertices
“adjacency list”

Han

Leia
Luke
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Adjacency Matrix
A |V| x |V| array in which an element (u, v) 

is true if and only if there is an edge from u to v

Han

Leia
Luke

Han Luke Leia
Han

Luke
Leia

runtime for various operations? space requirements: 15



Adjacency List
A |V|-ary list (array) in which each entry stores a 

list (linked list) of all adjacent vertices

Han

Leia
Luke Han

Luke
Leia

space requirements: 16runtime for various operations?



Today’s Outline
• Topological Sort: Getting to Know Graphs with a Sort
• Graph ADT and Graph Representations
• Graph Terminology (a lot of it!)
• More Graph Algorithms

– Shortest Path (Dijkstra’s Algorithm)
– Minimum Spanning Tree (Kruskal’s Algorithm)
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Directed vs. Undirected Graphs
Han

Leia

Luke

Han

Leia

Luke

• In directed graphs, edges have a specific direction:

• In undirected graphs, they don’t (edges are two-way):

• Vertices u and v are adjacent if (u, v)  E 18



Directed vs. Undirected Graphs
• Adjacency lists and matrices both work fine to 

represent directed graphs. 

• To represent undirected graphs, either ensure that 
both orderings of every edge are included in the 
representation or ensure that the order doesn’t matter 
(e.g., always use a “canonical” order), which works 
poorly in adjacency lists.
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Weighted Graphs

20

30

35
60

Mukilteo
Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

How can we store weights in an adjacency matrix?
In an adjacency list?

Each edge has an associated weight or cost.

20



Graph Density
A sparse graph has O(|V|) edges

A dense graph has (|V|2) edges
Anything in between is either on the sparse side or on the dense side, 

depending critically on context!



Graph Density
A sparse graph has O(|V|) edges
Why is the adjacency list likely to be a better 

representation than the adjacency matrix for sparse 
graphs?

a. Sparse graphs have too few edges to fit in an 
adjacency matrix.

b. Much of the matrix will be “wasted” on 0s.
c. The adjacency list will guarantee better 

performance on a sparse graph.
d. None of these.



Connectivity
Undirected graphs are connected if there is a path between 

any two vertices

Directed graphs are strongly connected if there is a path from 
any one vertex to any other

Di-graphs are weakly connected if there is a path between any 
two vertices, ignoring direction

A complete graph has an edge between every pair of vertices



Isomorphism and Subgraphs
We often care only about the structure of a graph, not the 

names of its vertices.  Then, we can ask:
“Are two graphs isomorphic?”  Do the graphs have identical 

structure?  Can you “line up” their vertices so that their 
edges match?

“Is one graph a subgraph of the other?”  Is one graph 
isomorphic to a part of the other graph (a subset of its 
vertices and a subset of the edges connecting those 
vertices)?



Degree
• The degree of a vertex v in V is denoted deg(v)

and represents the number of edges incident on v.  
(An edge from v to itself contributes 2 towards the 
degree.)

• Handshaking Theorem: If G=(V,E) is an 
undirected graph, then:

• Corollary: An undirected graph has an even 
number of vertices of odd degree.

25



Degree/Handshake Example
• The degree of a vertex v in V is the number of 

edges incident on v.  
Let’s label the degree of every node and calculate the 

sum…
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Degree for Directed Graphs
• The in-degree of a vertex v in V is denoted deg-(v)

is the number of edges coming in to v.
• The out-degree of a vertex v in V is denoted 

deg+(v) is the number of edges coming out of v.
• We let deg(v) = deg+(v) + deg-(v)
• Then:
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Trees as Graphs
• Every tree is a graph with 

some restrictions:
– the tree is directed
– there are no cycles (directed 

or undirected)
– there is a directed path from 

the root to every node

A

B
D E

C
F

HG

JI



Directed Acyclic Graphs (DAGs)
DAGs are directed 

graphs with no 
(directed) cycles.

main()

add()

access()

mult()

read()

Trees  DAGs  Graphs We can only topo-sort DAGs!



Today’s Outline
• Topological Sort: Getting to Know Graphs with a Sort
• Graph ADT and Graph Representations
• Graph Terminology (a lot of it!)
• More Graph Algorithms

– Shortest Path (Dijkstra’s Algorithm)
– Minimum Spanning Tree (Kruskal’s Algorithm)

30



Single Source, Shortest Path
Given a graph G = (V, E) and a vertex s  V, 

find the shortest path from s to every vertex in V

Many variations:
– weighted vs. unweighted
– cyclic vs. acyclic
– positive weights only vs. negative weights allowed
– multiple weight types to optimize



The Trouble with 
Negative Weighted Cycles

A B

C D
E

2 10
1-5

2

What’s the shortest path from A to E?
(or to B, C, or D, for that matter)



Unweighted Shortest Path Problem
Assume source vertex is C… 

A

C

B

D

F H

G

E
Distance to: A  B  C  D  E  F  G  H



Dijkstra’s Algorithm for 
Single Source Shortest Path

• Classic algorithm for solving shortest path in 
weighted graphs without negative weights

• A greedy algorithm (irrevocably makes decisions 
without considering future consequences)

• Intuition:
– shortest path from source vertex to itself is 0
– cost of going to adjacent nodes is at most edge weights
– cheapest of these must be shortest path to that node
– update paths for new node and continue picking 

cheapest path



Intuition in Action
A

C

B

D

F H

G
E

2 2 3
2 1

1
410

8

11
94

2
7



Dijkstra’s Pseudocode
(actually, our pseudocode for Dijkstra’s algorithm)

Initialize the cost of each node to 
Initialize the cost of the source to 0
While there are unknown nodes left in the graph

Select the unknown node with the lowest cost: n
Mark n as known
For each node a which is adjacent to n

a’s cost = min(a’s old cost, n’s cost + cost of (n, a))

We can get the path from this
just as we did for mazes!



Dijkstra’s Algorithm in Action
A

C

B

D

F H

G
E

2 2 3
2 1

1
410

8

11
94

2
7

vertex known cost
A
B
C
D
E
F
G
H



THE KNOWN
CLOUD

G
Next shortest path from 
inside the known cloud

P

Better path
to the same node

The Cloud Proof

But, if the path to G is the next shortest path, 
the path to P must be at least as long. 

So, how can the path through P to G be shorter?

Source



Inside the Cloud (Proof)
Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodes in the cloud:
– initial cloud is just the source with shortest path 0
– inductive step: once we prove the shortest path to G is 

correct, we add it to the cloud

Negative weights blow this proof away!



Inside the Cloud (Proof)
Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodes in the cloud:
– initial cloud is just the source with shortest path 0
– inductive step: once we prove the shortest path to G is 

correct, we add it to the cloud
– (Aside:  The pseudocode was a while loop, and this is just a 

loop invariant proof…)

Negative weights blow this proof away!



Data Structures 
for Dijkstra’s Algorithm

Select the unknown node with the lowest cost
findMin/deleteMin

a’s cost = min(a’s old cost, …)
decreaseKey (i.e., change a key and 

fix the heap)
find by name (dictionary lookup!)

|V| times:

|E| times:

runtime:



Today’s Outline
• Topological Sort: Getting to Know Graphs with a Sort
• Graph ADT and Graph Representations
• Graph Terminology (a lot of it!)
• More Graph Algorithms

– Shortest Path (Dijkstra’s Algorithm)
– Minimum Spanning Tree (Kruskal’s Algorithm)
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Spanning tree: a subset of the edges from a 
connected graph that…
…touches all vertices in the graph (spans the graph)
…forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the 
least total edge cost.

Spanning Tree

4 7

1 5
9

2



Kruskal’s Algorithm for 
Minimum Spanning Trees

Yet another greedy algorithm:

Initialize all vertices to their own sets (i.e. unconnected)
While there are still unmarked edges

Pick the lowest cost edge e = (u, v) and mark it
If u and v are in different sets, add e to the minimum 

spanning tree and union the sets for u and v



Kruskal’s Algorithm in Action (1/5)
A

C

B

D

F H

G

E

2 2 3
2 1
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Kruskal’s Algorithm in Action (2/5)
A

C

B

D

F H

G
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Kruskal’s Algorithm in Action (3/5)
A

C
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Kruskal’s Algorithm in Action (4/5)
A

C

B

D
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G
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Kruskal’s Algorithm Completed (5/5)
A

C

B

D

F H

G

E

2 2 3
2 1
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8

1
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Does the algorithm work?
Warning!
• Proof in Epp (3rd p. 728) is slightly wrong.
• Wikipedia has a good proof.

– That’s basis of what I’ll present.
– It actually comes out naturally from how we’ve taught 

you to try to prove a program correct.



Kruskal’s Algorithm:
Does this work? 

Initialize all vertices to their own sets (i.e. unconnected)
Initialize all edges as unmarked.
While there are still unmarked edges

Pick the lowest cost unmarked edge e = (u, v) and    
mark it.

If u and v are in different sets, add e to the minimum 
spanning tree and union the sets for u and v

How have we learned to try to prove something like this?



Kruskal’s Algorithm:
What’s a good loop invariant???

Initialize all vertices to their own sets (i.e. unconnected)
Initialize all edges as unmarked.
While there are still unmarked edges

Pick the lowest cost unmarked edge e = (u, v) and    
mark it.

If u and v are in different sets, add e to the minimum 
spanning tree and union the sets for u and v



Loop Invariant for Kruskal’s
• (There are lots of technical, detailed loop 

invariants that would be needed for a totally 
formal proof, e.g.:)
– Each set is spanned by edges added to MST you are 

building.
– Those edges form a tree.
– …
– We will assume most of these without proof, if they are 

pretty obvious.



Loop Invariant for Kruskal’s
• What do we know about the partial solution we’re 

building up at each iteration?



Kruskal’s Algorithm in Action (1.5/5)

A

C

B

D

F H

G

E

2 2 3
2 1
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8

1
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Loop Invariant for Kruskal’s
• What do we know about the partial solution we’re 

building up at each iteration?
– Since we’re being greedy, we never go back and erase 

edges we add.
– Therefore, for the algorithm to work, whatever we’ve 

got so far must be part of some minimum spanning 
tree.

– That’s the key to making the proof work!



Loop Invariant Proof for Kruskal’s
• Candidate Loop Invariant:

– Whatever edges we’ve added at the start of each 
iteration are part of some minimum spanning tree.



Loop Invariant Proof for Kruskal’s
• Candidate Loop Invariant:

– Whatever edges we’ve added at the start of each 
iteration are part of some minimum spanning tree.

• Base Case:
• Inductive Step:



Loop Invariant Proof for Kruskal’s
• Candidate Loop Invariant:

– Whatever edges we’ve added at the start of each 
iteration are part of some minimum spanning tree.

• Base Case:
– When first arrive at the loop, the set of edges we’ve 

added is empty, so it’s vacuously true.  (We can’t have 
made any mistakes yet, since we haven’t picked any 
edges yet!)

• Inductive Step:



Loop Invariant Proof for Kruskal’s
• Candidate Loop Invariant:

– Whatever edges we’ve added at the start of each 
iteration are part of some minimum spanning tree.

• Base Case:  Done!
• Inductive Step:

– Assume that the loop invariant holds at start of loop 
body.

– Want to prove that it holds the next time you get to start 
of loop body (which is also the “bottom of the loop”).



Loop Invariant Proof for Kruskal’s
Inductive Step

• Candidate Loop Invariant:
– Whatever edges we’ve added at the start of each 

iteration are part of some minimum spanning tree.
• Inductive Step:

– Assume that the loop invariant holds at start of loop 
body.

– Let F be the set of edges we’ve added so far.
– Loop body has an if statement.  Therefore, two cases!



Kruskal’s Algorithm:
Initialize all vertices to their own sets (i.e. unconnected)
Initialize all edges as unmarked.
While there are still unmarked edges

Pick the lowest cost unmarked edge e = (u, v) and    
mark it.

If u and v are in different sets, add e to the minimum 
spanning tree and union the sets for u and v



Loop Invariant Proof for Kruskal’s
Inductive Step

• Candidate Loop Invariant:
– Whatever edges we’ve added at the start of each 

iteration are part of some minimum spanning tree.
• Inductive Step:

– Assume that the loop invariant holds at start of loop 
body.

– Let F be the set of edges we’ve added so far.
– Loop body has an if statement.  Therefore, two cases!

• Case I:  u and v are already in same set.  Therefore, the edge is 
not needed in any spanning tree that includes the edges we 
have so far.  Therefore, we throw out the edge, leave F 
unchanged, and loop invariant still holds.



Loop Invariant Proof for Kruskal’s
Inductive Step

• Candidate Loop Invariant:
– Whatever edges we’ve added at the start of each 

iteration are part of some minimum spanning tree.
• Inductive Step:

– Assume that the loop invariant holds at start of loop 
body.

– Let F be the set of edges we’ve added so far.
– Loop body has an if statement.  Therefore, two cases!

• Case I:  Done!
• Case II:  u and v are in different sets.  We add the edge to F 

and merge the sets for u and v.  This is the tricky case!



Loop Invariant Proof for Kruskal’s
Inductive Step:  Case II

• Assume that the loop invariant holds at start of 
loop body.

• Let F be the set of edges we’ve added so far.
• Because loop invariant holds, there exists some 

MST T that includes all of F.
• The algorithm will pick a new edge e to add to F.
• Two Sub-Cases (of Case II)!

– If e is in T, we add e to F and loop invariant still holds.
– If e is not in T,…  This is tricky.  We build a different 

MST from T that includes all of F+e …



Loop Invariant Proof for Kruskal’s
Inductive Step:  Case II-b

• Two Sub-Cases (of Case II)!
– If e is in T, we add e to F and loop invariant still holds.
– If e is not in T,…  This is tricky.  We build a different 

MST from T that includes all of F+e …
• If we add e to T, then T+e must have a unique cycle C.
• C must have a different edge f  not in F.  (Otherwise, adding e 

would have made a cycle in F.)
• Therefore, T+e-f is also a spanning tree.
• If w(f)<w(e), then Kruskal’s would have picked f next, not e.
• Therefore, w(T+e-f) = W(T).
• Therefore, T+e-f is an MST that includes all of F+e
• Loop invariant still holds.



Previous Example (Slightly Modified) 
to Show Proof Step

A

C

B

D

F H

G

E

2 2 3
2 1

4

10

8

2
92

2
7

Before loop, F is the green edges.



Previous Example (Slightly Modified) 
to Show Proof Step

A

C

B

D

F H

G

E

2 2 3
2 1
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10

8

2
92

2
7

There exists an MST T that extends F
(e.g., the fat edges)



Previous Example (Slightly Modified) 
to Show Proof Step

A

C

B

D

F H

G

E

2 2 3
2 1

4

10

8

2
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2
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What if we pick e (red edge) that is not part of T?
Then T+e has a cycle…



Previous Example (Slightly Modified) 
to Show Proof Step

A

C

B

D

F H

G

E

2 2 3
2 1

4

10

8

2
92

2
7

What if we pick e (red edge) that is not part of T?
Then T+e has a cycle, and the cycle includes an edge f
not in F (blue edge).



Previous Example (Slightly Modified) 
to Show Proof Step

A

C

B

D

F H

G

E

2 2 3
2 1

4

10

8

2
92

2
7

w(e) must be less than or equal to w(f)
Therefore, T+e-F is also an MST, but it includes
all of F+e.



Data Structures 
for Kruskal’s Algorithm

Pick the lowest cost edge…
findMin/deleteMin

If u and v are not already connected… 
…connect u and v.

find representative
union

|E| times:

|E| times:

With “disjoint-set” data structure, |E|lg(|E|) runtime.



Learning Goals
After this unit, you should be able to:
• Describe the properties and possible applications of various kinds of graphs (e.g., simple, complete), and the relationships among vertices, edges, and degrees.
• Prove basic theorems about simple graphs (e.g. handshaking theorem).
• Convert between adjacency matrices/lists and their corresponding graphs.
• Determine whether two graphs are isomorphic.
• Determine whether a given graph is a subgraph of another.
• Perform breadth-first and depth-first searches in graphs.
• Explain why graph traversals are more complicated than tree traversals.
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Wrong Proofs
• Skip these if you find them confusing.  (Continue 

with efficiency.)
• It’s hard to give a “counterexample”, since the 

algorithm is correct.  I will try to show why 
certain steps in the proof aren’t guaranteed to 
work as claimed.

• What goes wrong is that the proofs start from the 
finished result of Kruskal’s, so it’s hard to specify 
correctly which edge needs to get swapped.



Old (Wrong) Proof of Correctness
We already know this finds a spanning tree.
Proof by contradiction that Kruskal’s finds the minimum:

Assume another spanning tree has lower cost than Kruskal’s
Pick an edge e1 = (u, v) in that tree that’s not in Kruskal’s
Kruskal’s tree connects u’s and v’s sets with another edge e2
But, e2 must have at most the same cost as e1 (or Kruskal’s 

would have found and used e1 first to connect u’s and v’s sets)
So, swap e2 for e1 (at worst keeping the cost the same)
Repeat until the tree is identical to Kruskal’s: contradiction!

QED: Kruskal’s algorithm finds a minimum spanning tree.



Counterexample Graph
• Assume the graph is 

shaped like this.
• Ignore the details of edge 

weights.  (E.g., they might 
all be equal or something.)



Counterexample Old Proof

u v u ve1

Kruskal’s Result Other MST
The proof assumes some other MST and picks an edge e1
connecting vertices u and v that’s not in Kruskal’s result.



Counterexample Old Proof

u v u ve1

Kruskal’s Result Other MST
In Kruskal’s result, the sets for u and v were connected
at some point by some edge e2.  Let’s suppose it was the edge
shown (since we don’t know when those components were
connected).  w(e2)<=w(e1) or else Kruskal’s would have picked e1.

e2



Counterexample Old Proof

u v u ve1

Kruskal’s Result Other MST
The old wrong proof then says to swap e2 for e1 in the other MST.
But we can’t do it, because e2 is already in the other MST!
So, the proof is wrong, as it is relying on an illegal step.

e2



Fixing Old Proof

u v u ve1

Kruskal’s Result Other MST
To fix the proof, note that adding e1 to Kruskal’s creates a cycle.
Some other edge e3 on that cycle must be in Kruskal’s but not
the other MST (otherwise, other MST would have had a cycle).

e2
e3



Fixing Old Proof

u v u ve1

Kruskal’s Result Other MST
We already know w(e2)<=w(e1), or Kruskal would have had e1.
Now, note that e2 was the edge that merged u and v’s sets.
Therefore, w(e3)<=w(e2), because Kruskal added it earlier.
So, w(e3)<=w(e2)<=w(e1).

e2
e3



Fixing Old Proof

u v u v

Kruskal’s Result Other MST

e2
e3

So, w(e3)<=w(e2)<=w(e1).
Therefore, we can swap e3 for e1 in the other MST, making it
one edge closer to Kruskal’s, and continue with the old proof. 

e3



Counterexample for Epp’s Proof
• Assume the graph is 

shaped like this.
• In this case, I’ve got an 

actual counterexample, 
with specific weights.

• Assume all edges have 
weight 1, except for the 
marked edges with weight 
2.

2

2

22 2
2



Counterexample Epp’s Proof

Kruskal’s Result T Other MST T1
Epp’s proof (3rd edition, pp. 727-728) also starts with Kruskal’s
result (she calls it T) and some other MST, which she calls T1.
She tries to show that for any other T1, you can convert it into T
by a sequence of swaps that doesn’t change the weight.

2

2 2
2

2

2



Counterexample Epp’s Proof

Kruskal’s Result T Other MST T1
If T is not equal to T1, there exists an edge e in T, but not in T1.
This could be the edge shown.

2

2 2
2

2

2

e



Counterexample Epp’s Proof

Kruskal’s Result T Other MST T1
Adding e to T1 produces a unique “circuit”. She then says,
“Let e’ be an edge of this circuit such that e’ is not in T.” 
OK, so this could be the labeled edge e’ of the cycle that is not in T. 

2

2 2
2

2

2

e 2 e
e’



Counterexample Epp’s Proof

Kruskal’s Result T Other MST T2
Next, she creates T2 by adding e to T1 and deleting e’.
I am showing T2 above.  Note, however, that we’ve added an edge
with weight 2 and deleted an edge with weight 1!  T2 has higher
weight (12) than T1 did (11).  The proof is wrong!

2

2 2
2

2

2

e 2 e



Counterexample Epp’s Proof

Kruskal’s Result T Other MST T2
It’s interesting to read the wrong justification given in the proof
that w(e)=2 has to be less than w(e’)=1.  “…at the stage in Kruskal’s
algorithm when e was added to T, e’ was available to be added
[since … at that stage its addition could not produce a circuit…]”  Oops!

2

2 2
2

2

2

e 2 e
e’



Counterexample Epp’s Proof

Kruskal’s Result T Other MST T2
I don’t see an easy fix for her proof.  It might be possible to show
that there must be a suitable edge with sufficiently large weight.
The hard part is that you have to reason back to how Kruskal’s
algorithm could have done something, after the fact!

2

2 2
2

2

2

e 2 e
e’



Counterexample Epp’s Proof

Kruskal’s Result T Other MST T2
See how much easier it was to do the proof with loop invariants?!
You prove what you need at exactly the point in the algorithm
when you are making decisions, so you know exactly what edge
e gets added and what edge f gets deleted.
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Some Extra Examples, etc.
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Bigger (Undirected) Formal 
Graph Example
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G = <V,E>
V = vertices = 
{A,B,C,D,E,F,G,H,I,J,K,L}
E = edges = 
{(A,B),(B,C),(C,D),(D,E),(E,F),
(F,G),(G,H),(H,A),(A,J),(A,G),
(B,J),(K,F),(C,L),(C,I),(D,I),
(D,F),(F,I),(G,K),(J,L),(J,K),
(K,L),(L,I)}

(A simple graph like this one is undirected, has 0 or 1 edge 
between each pair of vertices, and no edge from a vertex to itself.)



A vertex
An edge with endpoints B and C

A path:  A to 
B to C to D

A cycle:  A to 
B to J to A

A path is a list of vertices {v1, v2, …, vn} such that 
(vi, vi+1)  E for all 0  i < n.

A cycle is a path that starts and ends at the same vertex.
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Example
V = {A, B, C, D, E}
E = {{A, B}, {A, D}, {C, E}, {D, E}}
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A Directed Graph
V = {A, B, C, D, E}
E = {(A, B), (B, A), (B, E), (D, A), (E, A), (E, D), (E, C)}
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Weighted Graph
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Example of a Path
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Example of a Cycle
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Disconnected Graph
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Graph Isomorphism
The numbering of the vertices, and their physical arrangement 
are not important.  The following is the same graph as the 
previous slide.
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Adjacency Matrix
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Adjacency Matrix (directed graph)
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Adjacency List (Directed Graph)
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Adjacency List Representation
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Breadth First Search
• Starting at a source vertex
• Systematically explore the edges to “discover” 

every vertex reachable from s.
• Produces a “breadth-first tree”

– Root of s
– Contains all vertices reachable from s
– Path from s to v is the shortest path
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Algorithm
1. Take a start vertex, mark it identified (color it gray), and place it into a queue.
2. While the queue is not empty

1. Take a vertex, u, out of the queue (Begin visiting u)
2. For all vertices v, adjacent to u,

1. If v has not been identified or visited
1. Mark it identified (color it gray)
2. Place it into the queue
3. Add edge u, v to the Breadth First Search Tree

3. We are now done visiting u (color it black)
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Example
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Trace of Breadth First Search
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Breadth-First Search Tree
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Application of BFS
• A Breadth First Search finds the shortest path 

from the start vertex to all other vertices based on 
number of edges.

• We can use a Breadth First Search to find the 
shortest path through a maze.

• This may be a more efficient solution than that 
found by a backtracking algorithm.
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Depth First Search
• Start at some vertex
• Follow a simple path discovering new vertices 

until you cannot find a new vertex.
• Back-up until you can start finding new vertices.

A simple path is a path 
with no cycles.
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Algorithm for DFS
1. Start at vertex u. Mark it visited.
2. For each vertex v adjacent to u

1. If v has not been visited
1. Insert u, v into DFS tree
2. Recursively apply this algorithm starting at v

3. Mark u finished.
• Note: for a Directed graph, a DFS may produce multiple trees – this is called a DFS forest.
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DFS Example
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Trace of Depth-First Search
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Depth-First Search Tree
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Application of DFS
• A topological sort is an ordering of the vertices such that if (u, v) is an edge in the graph, then vdoes not appear before u in the ordering.
• A Depth First Search can be used to determine a topological sort of a Directed Acyclic Graph (DAG)
• An application of this would be to determine an ordering of courses that is consistent with the prerequisite requirements.
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CIS Prerequisites
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Topological Sort Algorithm
• Observation: If there is an edge from u to v, then 

in a DFS u will have a finish time later than v.
• Perform a DFS and output the vertices in the 

reverse order that they’re marked as finished.
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Example of a 
Directed Weighted Graph
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Another Weighted Graph
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Example



Separate Tree and Graph Examples: Cities in Germany


