
A Sophomoric Introduction to Shared-Memory

Parallelism and Concurrency

Lecture 2

Analysis of Fork-Join Parallel Programs

Steve Wolfman, based on work by Dan Grossman

(with small tweaks by Alan Hu)

Learning Goals

• Define work—the time it would take one processor to complete

a parallelizable computation; span—the time it would take an

infinite number of processors to complete the same

computation; and Amdahl's Law—which relates the speedup in

a program to the proportion of the program that is parallelizable.

• Use work, span, and Amdahl's Law to analyse the speedup

available for a particular approach to parallelizing a

computation.

• Judge appropriate contexts for and apply the parallel map,

parallel reduce, and parallel prefix computation patterns.

2Sophomoric Parallelism and Concurrency, Lecture 2

Outline

Done:

• How to use fork and join to write a parallel algorithm

• Why using divide-and-conquer with lots of small tasks is best

– Combines results in parallel

• Some C++11 and OpenMP specifics

– More pragmatics (e.g., installation) in separate notes

Now:

• More examples of simple parallel programs

• Other data structures that support parallelism (or not)

• Asymptotic analysis for fork-join parallelism

• Amdahl’s Law

3Sophomoric Parallelism and Concurrency, Lecture 2

“Exponential speed-up” using

Divide-and-Conquer
• Counting matches (lecture) and summing (reading) went from O(n)

sequential to O(log n) parallel (assuming lots of processors!)

– An exponential speed-up in theory (in what sense?)

4Sophomoric Parallelism and Concurrency, Lecture 2

+ + + + + + + +

+ + + +

+ +

+

• Many other operations can also use this structure…

Other Operations?

5Sophomoric Parallelism and Concurrency, Lecture 2

+ + + + + + + +

+ + + +

+ +

+

What’s an example of something else we can put at the “+” marks?

What else looks like this?

6Sophomoric Parallelism and Concurrency, Lecture 2

+ + + + + + + +

+ + + +

+ +

+

What’s an example of something we cannot put there

(and have it work the same as a for loop would)?

Reduction:

a single answer aggregated from a list

7Sophomoric Parallelism and Concurrency, Lecture 2

+ + + + + + + +

+ + + +

+ +

+

What are the basic requirements for the reduction operator?

Note: The “single” answer can

be a list or other collection.

Is Counting Matches Really a Reduction?

Count matches:

FORALL array elements:

score = (if element == target then 1 else 0)

total_score += score

Is this “really” a reduction?

8Sophomoric Parallelism and Concurrency, Lecture 2

Even easier parallel operation: Maps

(AKA “Data Parallelism”)

• A map operates on each element of a collection independently to

create a new collection of the same size

– No combining results

– For arrays, this is so trivial some hardware has direct support!

– You’ve also seen this in CPSC 110 in Racket

• Typical example: Vector addition

9Sophomoric Parallelism and Concurrency, Lecture 2

void vector_add(int result[], int left[], int right[], int len) {

FORALL(i=0; i < len; i++) {

result[i] = left[i] + right[i];

}

}

Even easier parallel operation: Maps

(AKA “Data Parallelism”)

• A map operates on each element of a collection independently to

create a new collection of the same size

– No combining results

– For arrays, this is so trivial some hardware has direct support!

– You’ve also seen this in CPSC 110 in Racket

• Typical example: Vector addition

10Sophomoric Parallelism and Concurrency, Lecture 2

void vector_add(int result[], int left[], int right[], int len) {

FORALL(i=0; i < len; i++) {

result[i] = arr1[i] + arr2[i];

}

}

This is pseudocode in the notes for a for loop where

the iterations can go in parallel.

Maps in OpenMP (w/explicit Divide & Conquer)

• Even though there is no result-combining, it still helps with load

balancing to create many small tasks

– Maybe not for vector-add but for more compute-intensive maps

– The forking is O(log n) whereas theoretically other approaches

to vector-add is O(1)

11Sophomoric Parallelism and Concurrency, Lecture 2

void vector_add(int result[], int left[], int right[],
int lo, int hi)

{
const int SEQUENTIAL_CUTOFF = 1000;
if (hi - lo <= SEQUENTIAL_CUTOFF) {
for (int i = lo; i < hi; i++)
result[i] = left[i] + right[i];

return;
}

#pragma omp task untied shared(result, left, right)
vector_add(result, left, right, lo, lo + (hi-lo)/2);

vector_add(result, left, right, lo + (hi-lo)/2, hi);
#pragma omp taskwait
}

Aside: Maps in OpenMP (w/ parallel for)

12Sophomoric Parallelism and Concurrency, Lecture 2

void vector_add(int result[], int left[], int right[],
int len) {

#pragma omp parallel for
for (int i=0; i < len; i++) {
result[i] = left[i] + right[i];

}
}

Maps are so common, OpenMP has built-in support for them.

(But the point of this class is to learn how the algorithms work.)

Even easier: Maps (Data Parallelism)

• A map operates on each element of a collection independently to

create a new collection of the same size

– No combining results

– For arrays, this is so trivial some hardware has direct support

• One we already did: counting matches becomes mapping

“number 1 if it matches, else 0” and then reducing with +

13Sophomoric Parallelism and Concurrency, Lecture 2

void equals_map(int result[], int array[], int len, int target) {

FORALL(i=0; i < len; i++) {

result[i] = (array[i] == target) ? 1 : 0;

}

}

Maps and reductions

These are by far the two most important and common patterns.

You should learn to recognize when an algorithm can be written in

terms of maps and reductions because they make parallel

programming simple…

14Sophomoric Parallelism and Concurrency, Lecture 2

Exercise: find the ten largest numbers

Given an array of positive integers, return the ten largest in the list.

15Sophomoric Parallelism and Concurrency, Lecture 2

How is this a map and/or reduce?

Exercise: count prime numbers

Given an array of positive integers, count the number of prime

numbers.

16Sophomoric Parallelism and Concurrency, Lecture 2

How is this a map and/or reduce?

Exercise: find first substring match

Given a (small) substring and a (large) text, find the index where

the first occurrence of the substring starts in the text.

17Sophomoric Parallelism and Concurrency, Lecture 2

How is this a map and/or reduce?

Digression: MapReduce on clusters

You may have heard of Google’s “map/reduce” or the open-source

version Hadoop

• Idea: Perform maps/reduces on data using many machines

– The system takes care of distributing the data and managing

fault tolerance

– You just write code to map one element and reduce

elements to a combined result

• Separates how to do recursive divide-and-conquer from what

computation to perform

– Old idea in higher-order functional programming transferred

to large-scale distributed computing

– Complementary approach to declarative queries for

databases

18Sophomoric Parallelism and Concurrency, Lecture 2

Outline

Done:

• How to use fork and join to write a parallel algorithm

• Why using divide-and-conquer with lots of small tasks is best

– Combines results in parallel

• Some C++11 and OpenMP specifics

– More pragmatics (e.g., installation) in separate notes

Now:

• More examples of simple parallel programs

• Other data structures that support parallelism (or not)

• Asymptotic analysis for fork-join parallelism

• Amdahl’s Law

19Sophomoric Parallelism and Concurrency, Lecture 2

On What Other Structures Can We Use

Divide-and-Conquer Map/Reduce?

• A linked list?

• A binary tree?

– Any?

– Heap?

– Binary search tree?

• AVL?

• B+?

• A hash table?

20Sophomoric Parallelism and Concurrency, Lecture 2

Outline

Done:

• How to use fork and join to write a parallel algorithm

• Why using divide-and-conquer with lots of small tasks is best

– Combines results in parallel

• Some C++11 and OpenMP specifics

– More pragmatics (e.g., installation) in separate notes

Now:

• More examples of simple parallel programs

• Other data structures that support parallelism (or not)

• Asymptotic analysis for fork-join parallelism

• Amdahl’s Law

21Sophomoric Parallelism and Concurrency, Lecture 2

Analyzing algorithms

We’ll set aside analyzing for correctness for now.
(Maps are obvious? Reductions are correct if the operator is associative?)

How do we analyze the efficiency of our parallel algorithms?

– We want asymptotic bounds

– We want to analyze the algorithm without regard to a specific

number of processors

22Sophomoric Parallelism and Concurrency, Lecture 2

Note: a good OpenMP implementation does some “magic”

to get expected run-time performance asymptotically

optimal for the available number of processors.

So, we get to assume this guarantee.

Digression, Getting Dressed (1)

23Sophomoric Parallelism and Concurrency, Lecture 2

socks

shirt

shoes

pants

watch

belt

coat

under

roos

Assume it takes me 5 seconds to put on each item, and I cannot put on more

than one item at a time:

How long does it take me to get dressed?

(Note: costs are on nodes, not edges.)

Digression, Getting Dressed ()

24Sophomoric Parallelism and Concurrency, Lecture 2

socks

shirt

shoes

pants

watch

belt

coat

under

roos

Assume it takes my robotic wardrobe 5 seconds to put me into each item,

and it can put on up to 20 items at a time.

How long does it take me to get dressed?

Digression, Getting Dressed (2)

25Sophomoric Parallelism and Concurrency, Lecture 2

socks

shirt

shoes

pants

watch

belt

coat

under

roos

Assume it takes me 5 seconds to put on each item, and I can use my two

hands to put on 2 items at a time.

How long does it take me to get dressed?

Un-Digression, Getting Dressed: “Work”

26Sophomoric Parallelism and Concurrency, Lecture 2

socks

shirt

shoes

pants

watch

belt

coat

under

roos

What mattered when I could put only one item on at a time?

How do we count it?

Un-Digression, Getting Dressed: “Span”

27Sophomoric Parallelism and Concurrency, Lecture 2

socks

shirt

shoes

pants

watch

belt

coat

under

roos

What mattered when I could an infinite number of items on at a time?

How do we count it?

Work and Span

Let TP be the running time if there are P processors available

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

– Just “sequentialize” the recursive forking

• Span: How long it would take infinity processors = T
– Example: O(log n) for summing an array

• Notice having > n/2 processors is no additional help

28Sophomoric Parallelism and Concurrency, Lecture 2

The DAG

• A program execution using fork and join can be seen as a DAG

– Nodes: Pieces of work

– Edges: Source must finish before destination starts

29Sophomoric Parallelism and Concurrency, Lecture 2

• A fork “ends a node” and makes

two outgoing edges

• New thread

• Continuation of current thread

• A join “ends a node” and makes

a node with two incoming edges

• Node just ended

• Last node of thread joined on

So, what is T in the graph?

Our simple examples

• fork and join are very flexible, but divide-and-conquer maps

and reductions use them in a very basic way:

– A tree on top of an upside-down tree

30Sophomoric Parallelism and Concurrency, Lecture 2

base cases

divide

combine

results

(Note: costs are on nodes, not edges.)

Map/Reduce DAG: Work?

What’s the work in this DAG?

31Sophomoric Parallelism and Concurrency, Lecture 2

Map/Reduce DAG: Work?

What’s the span in this DAG?

32Sophomoric Parallelism and Concurrency, Lecture 2

More interesting DAGs?

• The DAGs are not always this simple

• Example:

– Suppose combining two results might be expensive enough

that we want to parallelize each one

– Then each node in the inverted tree on the previous slide

would itself expand into another set of nodes for that parallel

computation

33Sophomoric Parallelism and Concurrency, Lecture 2

Connecting to performance

• Recall: TP = running time if there are P processors available

• Work = T1 = sum of run-time of all nodes in the DAG

– That lonely processor does everything

– Any topological sort is a legal execution

– O(n) for simple maps and reductions

• Span = T = sum of run-time of all nodes on the most-expensive

path in the DAG

– Note: costs are on the nodes not the edges

– Our infinite army can do everything that is ready to be done,

but still has to wait for earlier results

– O(log n) for simple maps and reductions

34Sophomoric Parallelism and Concurrency, Lecture 2

Definitions

A couple more terms:

• Speed-up on P processors: T1 / TP

• If speed-up is P as we vary P, we call it perfect linear speed-up

– Perfect linear speed-up means doubling P halves running time

– Usually our goal; hard to get in practice

• Parallelism is the maximum possible speed-up: T1 / T

– At some point, adding processors won’t help

– What that point is depends on the span

Parallel algorithms is about decreasing span without

increasing work too much

35Sophomoric Parallelism and Concurrency, Lecture 2

Asymptotically Optimal TP

• So we know T1 and T but we want TP (e.g., P=4)

• Ignoring memory-hierarchy issues (caching), TP can’t beat

– T1 / P why not?

– T why not?

36Sophomoric Parallelism and Concurrency, Lecture 2

Asymptotically Optimal TP

• So we know T1 and T but we want TP (e.g., P=4)

• Ignoring memory-hierarchy issues (caching), TP can’t beat

– T1 / P

– T

• So an asymptotically optimal execution would be:

TP = O((T1 / P) + T)

– First term dominates for small P, second for large P

• Good OpenMP implementations give an expected-time

guarantee of asymptotically optimal!

– Expected time because it flips coins when scheduling

– How? Beyond our current scope

– Guarantee requires a few assumptions about your code…
37Sophomoric Parallelism and Concurrency, Lecture 2

Division of responsibility

• Our job as OpenMP users:

– Pick a good algorithm

– Write a program. When run, it creates a DAG of things to do

– Make all the nodes small-ish and (very) approximately equal

amount of work

• The framework-implementer’s job:

– Assign work to available processors to avoid idling

– Keep constant factors low

– Give the expected-time optimal guarantee assuming

framework-user did their job

TP = O((T1 / P) + T)

38Sophomoric Parallelism and Concurrency, Lecture 2

Examples

TP = O((T1 / P) + T)

• In the algorithms seen so far (e.g., sum an array):

– T1 = O(n)

– T= O(log n)

– So expect (ignoring overheads): TP = O(n/P + log n)

• Suppose instead:

– T1 = O(n2)

– T= O(n)

– So expect (ignoring overheads): TP = O(n2/P + n)

39Sophomoric Parallelism and Concurrency, Lecture 2

Examples

TP = O((T1 / P) + T)

• Let’s say we did our first-stab loop version (a main loop that

forks off a bunch of workers). What would be the best choice of

number of pieces? Think in terms of…

– T1 =

– T=

– So expect (ignoring overheads): TP =

40Sophomoric Parallelism and Concurrency, Lecture 2

Outline

Done:

• How to use fork and join to write a parallel algorithm

• Why using divide-and-conquer with lots of small tasks is best

– Combines results in parallel

• Some C++11 and OpenMP specifics

– More pragmatics (e.g., installation) in separate notes

Now:

• More examples of simple parallel programs

• Other data structures that support parallelism (or not)

• Asymptotic analysis for fork-join parallelism

• Amdahl’s Law

41Sophomoric Parallelism and Concurrency, Lecture 2

Amdahl’s Law (mostly bad news)

• So far: analyze parallel programs in terms of work and span

• In practice, typically have parts of programs that parallelize well…

– Such as maps/reductions over arrays and trees

…and parts that don’t parallelize at all

– Such as reading a linked list, getting input, doing

computations where each needs the previous step, etc.

“Nine women can’t make a baby in one month”

42Sophomoric Parallelism and Concurrency, Lecture 2

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: T1 = S + (1-S) = 1

Suppose we get perfect linear speedup on the parallel portion

Then: TP = S + (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):

T1 / TP =

How good/bad is this?

43Sophomoric Parallelism and Concurrency, Lecture 2

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: T1 = S + (1-S) = 1

Suppose we get perfect linear speedup on the parallel portion

Then: TP = S + (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):

T1 / TP =

And the parallelism (infinite processors) is:

T1 / T =

44Sophomoric Parallelism and Concurrency, Lecture 2

Why such bad news

T1 / TP = 1 / (S + (1-S)/P) T1 / T = 1 / S

• Suppose 33% of a program is sequential

– How much speed-up do you get from 2 processors?

– How much speep-up do you get from 1,000,000 processors?

45Sophomoric Parallelism and Concurrency, Lecture 2

Why such bad news

T1 / TP = 1 / (S + (1-S)/P) T1 / T = 1 / S

• Suppose 33% of a program is sequential

– How much speed-up do you get from 2 processors?

– How much speep-up do you get from 1,000,000 processors?

• Suppose you miss the good old days (1980-2005) where 12ish

years was long enough to get 100x speedup

– Now suppose in 12 years, clock speed is the same but you

get 256 processors instead of 1

– For 256 processors to get at least 100x speedup, we need

100 1 / (S + (1-S)/256)

What do we need for S?

46Sophomoric Parallelism and Concurrency, Lecture 2

Plots you have to see

1. Assume 256 processors

– x-axis: sequential portion S, ranging from .01 to .25

– y-axis: speedup T1 / TP (will go down as S increases)

2. Assume S = .01 or .1 or .25 (three separate lines)

– x-axis: number of processors P, ranging from 2 to 32

– y-axis: speedup T1 / TP (will go up as P increases)

Do this!

– Chance to use a spreadsheet or other graphing program

– Compare against your intuition

– A picture is worth 1000 words, especially if you made it

47Sophomoric Parallelism and Concurrency, Lecture 2

All is not lost

Amdahl’s Law is a bummer!

– But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms

– Some things that seem sequential are actually parallelizable

• Can change the problem we’re solving or do new things

– Example: Video games use tons of parallel processors

• They are not rendering 10-year-old graphics faster

• They are rendering more beautiful(?) monsters

48Sophomoric Parallelism and Concurrency, Lecture 2

Moore and Amdahl

• Moore’s “Law” is an observation (based on physics,

engineering, economics, and technology trends) about the

progress of the semiconductor industry

– Transistors per chip double roughly every 18 months

• Amdahl’s Law is a mathematical theorem

– Diminishing returns of adding more processors

• Both are incredibly important in designing computer systems

49Sophomoric Parallelism and Concurrency, Lecture 2

Learning Goals

• Define work—the time it would take one processor to complete

a parallelizable computation; span—the time it would take an

infinite number of processors to complete the same

computation; and Amdahl's Law—which relates the speedup in

a program to the proportion of the program that is parallelizable.

• Use work, span, and Amdahl's Law to analyse the speedup

available for a particular approach to parallelizing a

computation.

• Judge appropriate contexts for and apply the parallel map,

parallel reduce, and parallel prefix computation patterns.

50Sophomoric Parallelism and Concurrency, Lecture 2

