CPSC 221: Data Structures

Balanced BST (AVL Trees)

Alan J. Hu
(Using mainly Steve Wolfman's Slides)

Balance

Balance

- height(left subtree) height(right subtree)
- zero everywhere ⇒ perfectly balanced
- small everywhere \Rightarrow balanced enough

Balance between -1 and 1 everywhere ⇒ maximum height of ~1.44 lg n

AVL Tree Dictionary Data Structure

- Binary search tree properties
 - binary tree property
 - search tree property
- Balance property
 - balance of every node is:

$$-1, 0, or 1$$

- result:
 - depth is $\Theta(\log n)$

But, How Do We Stay Balanced?

• What do you do if you pick something up out of balance?

Rotation Intuition: Before

Rotation Intuition: After

Time Complexity of Rotation?

- O(1)?
- O(lg n)?
- O(n)?
- $O(n \lg n)$?
- $O(n^2)$?
- All of the above?

AVL Tree Insertion

- Pre-Condition: Inserting an item into a correct AVL tree (binary, search tree, AVL balanced)
- Do a normal BST insert.
- This might upset balance property, so do rotation(s) as needed to restore AVL balance.

Turns out, you need at most two rotations!

Before Insertion (Single Rotation)

After Insertion (Single Rotation)

General Single Rotation

- After rotation, subtree's height same as before insert!
- Height of all ancestors unchanged.

So?

Example: Easy Insert

Insert(3)

Hard Insert (Bad Case #1)

Insert(33)

Single Rotation

Hard Insert (Bad Case #2)

Insert(18)

Single Rotation (oops!)

When Single Rotation Doesn't Help

- After rotation, still unbalanced!
- What can you do?

When Single Rotation Doesn't Help

- After rotation, still unbalanced!
- The problem is Y is too heavy, so rotate stuff out of Y!

• First, do a single rotation farther down, to split up the big subtree.

• First, do a single rotation farther down, to split up the big subtree.

• Now, we can do the originally planned rotation, and not have too much height shift over...

• Now, we can do the originally planned rotation, and not have too much height shift over...

General Double Rotation

- Height of subtree still the same as it was before insert!
- Height of all ancestors unchanged.

Hard Insert (Bad Case #2)

Insert(18)

Double Rotation (Step #1)

Look familiar?

Double Rotation (Step #2)

Today's Outline

- Addressing one of our problems
- Single and Double Rotations
- AVL Tree Implementation

Insert Algorithm

- Find spot for value
- Hang new node
- Search back up for imbalance
- If there is an imbalance:
 - case #1: Perform single rotation and exit
 - case #2: Perform double rotation and exit

Mirrored cases also possible

AVL Algorithm Revisited

- Recursive
- 1. Search downward for spot
- 2. Insert node
- 3. Unwind stack, correcting heights
 - a. If imbalance #1, single rotate
 - b. If imbalance #2,
 double rotate

- Iterative
- 1. Search downward for
 spot, stacking
 parent nodes
- 2. Insert node
- 3. Unwind stack, correcting heights
 - a. If imbalance #1,
 single rotate and
 exit
 - b. If imbalance #2,
 double rotate and
 exit

```
Single Rotation Code
                                                      temp
void RotateLeft(Node *& root) {
 Node * temp = root->right;
 root->right = temp->left;
 temp->left = root;
 root->height = max(height(root->right),
                    height(root->left)) + 1;
 temp->height = max(height(temp->right),
                    height(temp->left) + 1;
 root = temp;
```

(The "height" function returns -1 for a NULL subtree or the "height" field of a non-NULL subtree.)

Notice that root is a reference parameter. MUST be the "correct" pointer.

Double Rotation Code

Double Rotation Completed

