CPSC 221: Data Structures

Balanced BST (AVL Trees)

Alan J. Hu
(Using mainly Steve Wolfman’s Slides)

Balance

 Balance 0

— height(left subtree) - height(right subtree)
— zero everywhere = perfectly balanced
— small everywhere = balanced enough

Balance between -1 and 1 everywhere =
maximum height of ~1.44 Ig n

AVL Tree
Dictionary Data Structure

e Binary search tree (8)
properties

— binary tree property

— search tree property 6 @

« Balance property

— balance of every node is: 9 @ @ @

-1, O, or 1

I O BN GIONN
(1og n) 1

But, How Do We Stay Balanced?

* What do you do if you pick something up out of
balance?

Rotation Intuition: Before

Rotation Intuition: After

Time Complexity of Rotation?

e O(1)?
 O(lgn)?
e O(n)?

e O(nlgn)?
e O(n?)?

e All of the above?

AVL Tree Insertion

e Pre-Condition: Inserting an item into a correct
AVL tree (binary, search tree, AVL balanced)

e Do anormal BST insert.

* This might upset balance property, so do
rotation(s) as needed to restore AVL balance.

Turns out, you need at most two rotations!

Before Insertion (Single Rotation)

h+1

After Insertion (Single Rotation)

<« An Insert made this BAD!

General Single Rotation

h+2 h+1

<« An Insert made this BAD!

 After rotation, subtree’s height same as before insert!

* Height of all ancestors unchanged. 07

Example: Easy Insert

Insert(3)

Hard Insert (Bad Case #1)

Insert(33)

Single Rotation

Hard Insert (Bad Case #2)

Insert(18)

Single Rotation (oops!)

When Single Rotation Doesn’t Help

h+2

o After rotation, still unbalanced!
* What can you do?

When Single Rotation Doesn’t Help

h+2

o After rotation, still unbalanced!
 The problemis Y is too heavy, so rotate stuff out of Y'!

Double Rotation Part 1

h+2

h-1?
 First, do a single rotation farther down, to split up the
big subtree.

Double Rotation Part 1

h-1?
 First, do a single rotation farther down, to split up the
big subtree.

Double Rotation Part 2

h-1?
« Now, we can do the originally planned rotation, and not
have too much height shift over...

Double Rotation Part 2

. h-1?
« Now, we can do the originally planned rotation, and not
have too much height shift over...

General Double Rotation

h+2

* Height of subtree still the same as it was before insert!
« Height of all ancestors unchanged.

Hard Insert (Bad Case #2)

Insert(18)

Double Rotation (Step #1)

Look familiar?

Double Rotation (Step #2)

Today’s Outline

 Addressing one of our problems
 Single and Double Rotations
 AVL Tree Implementation

Insert Algorithm

Find spot for value
Hang new node
Search back up for imbalance

If there Is an imbalance:
\case #1. Perform single rotation and exit

\I case #2: Perform double rotation and exit

Mirrored cases also possible

AVL Algorithm Revisited

e Recursive
1. Search downward for
spot

2. Insert node
3. Unwind stack,
correcting heights
a. I imbalance #1,
single rotate
b. If imbalance #2,
double rotate

(Parent pointers make iterative version easier.)

e lterative

1. Search downward for
spot, stacking
parent nodes

2. Insert node

3. Unwind stack,
correcting heights

a.-

IT imbalance #1,
single rotate and
exit

IT imbalance #2,
double rotate and
exit

Single Rotation Code

voild RotatelLeft(Node *& root) {

Node * temp = root->right;
root->right = temp->left;
temp->left = root;
root->height = max(height(root->right),

height(root->left)) + 1;
temp->height = max(height(temp->right),

height(temp->left) + 1;
root = temp;

(The “height” function returns -1 for a NULL subtree
or the “height” field of a non-NULL subtree.)
Notice that root is a reference parameter. MUST be the “correct” pointer.

Double Rotation Code

void DoubleRotateLeft(Node *& root) {
RotateRight(root->right);
RotatelLeft(root);

First Rotation

Double Rotation Completed

First Rotation Second Rotation

	CPSC 221: Data Structures��Balanced BST (AVL Trees)
	Balance
	AVL Tree �Dictionary Data Structure
	But, How Do We Stay Balanced?
	Rotation Intuition: Before
	Rotation Intuition: After
	Time Complexity of Rotation?
	AVL Tree Insertion
	Before Insertion (Single Rotation)
	After Insertion (Single Rotation)
	General Single Rotation
	Example: Easy Insert
	Hard Insert (Bad Case #1)
	Single Rotation
	Hard Insert (Bad Case #2)
	Single Rotation (oops!)
	When Single Rotation Doesn’t Help
	When Single Rotation Doesn’t Help
	Double Rotation Part 1
	Double Rotation Part 1
	Double Rotation Part 2
	Double Rotation Part 2
	General Double Rotation
	Hard Insert (Bad Case #2)
	Double Rotation (Step #1)
	Double Rotation (Step #2)
	Today’s Outline
	Insert Algorithm
	AVL Algorithm Revisited
	Single Rotation Code
	Double Rotation Code
	Double Rotation Completed

