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Sorting Takes Priority
Steve Wolfman

(minor tweaks by Alan Hu)
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Today’s Outline

• Sorting with Priority Queues, Three Ways
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How Do We Sort 
with a Priority Queue?

You have a bunch of data.
You want to sort by priority.
You have a priority queue.
WHAT DO YOU DO?

F(7) E(5)
D(100) A(4)

B(6)

insert deleteMinG(9) C(3)
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“PQSort”
Sort(elts):
pq = new PQ
for each elt in elts:
pq.insert(elt);

sortedElts = new array of size elts.length
for i = 0 to elts.length – 1:
sortedElts[i] = pq.deleteMin

return sortedElts What sorting algorithm is this?
a. Insertion Sort
b. Selection Sort
c. Heap Sort
d. Merge Sort
e. None of these
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“PQSort”
Sort(elts):
pq = new PQ
for each elt in elts:
pq.insert(elt);

sortedElts = new array of size elts.length
for i = 0 to elts.length – 1:
sortedElts[i] = pq.deleteMin

return sortedElts
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What sorting algorithm is this?
a. Insertion Sort
b. Selection Sort
c. Heap Sort
d. Merge Sort
e. None of these

Abstract Data Type
vs.

Data Structure That Implements It



Reminder:
Naïve Priority Q Data Structures

• Unsorted list:
– insert: worst case O(1)

– deleteMin: worst case O(n)

• Sorted list:
– insert: worst case O(n)

– deleteMin: worst case O(1)
6



“PQSort” deleteMins with 
Unsorted List PQ

9 4 8 1 6 10 12 13 2 3 14 20 75
1 2 3 4 5 6 7 8 9 10 11 120 13

PQ
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“PQSort” deleteMins with 
Unsorted List PQ

9 4 8 6 10 12 13 14 20 75
1 2 3 4 5 6 7 8 9 10 11 120 13

PQ
1 2 3



“PQSort” deleteMins with 
Unsorted List PQ

9 8 6 10 12 13 14 20 75
1 2 3 4 5 6 7 8 9 10 11 120 13

PQ
1 2 3 4



Two PQSort Tricks

1) Use the array to store both your results and your 
PQ.  No extra memory needed!

2) Use a max-heap to sort in increasing order (or a 
min-heap to sort in decreasing order) so your 
heap doesn’t “move” during deletions.
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“PQSort” deleteMaxes with 
Unsorted List MAX-PQ

9 4 8 1 6 10 12 13 2 3 14 20 75
1 2 3 4 5 6 7 8 9 10 11 120 13

9 4 8 1 6 10 12 13 2 3 14 7 205

PQ

PQ

Result

9 4 8 1 6 10 12 13 2 3 7 14 205

PQ Result

9 4 8 1 6 10 12 7 2 3 13 14 205

PQ Result15



“PQSort” deleteMaxes with 
Unsorted List MAX-PQ

How long does “build” take?  No time at all!
How long do the deletions take? Worst case: O(n2) 
What algorithm is this?
a. Insertion Sort
b. Selection Sort
c. Heap Sort
d. Merge Sort
e. None of these

9 4 8 1 6 10 12 7 2 3 13 14 205

PQ Result16



“PQSort” insertions with 
Sorted List MAX-PQ

9 4 8 1 6 10 12 13 2 3 14 20 75
1 2 3 4 5 6 7 8 9 10 11 120 13

PQ
9 4 8 1 6 10 12 13 2 3 14 7 205

PQ
9 4 8 1 6 10 12 13 2 3 7 14 205

PQ
9 4 8 1 6 10 12 13 2 3 7 14 205

PQ
17



“PQSort” insertions with 
Sorted List MAX-PQ

9 4 8 1 6 10 12 13 2 3 7 14 205

PQ

How long does “build” take?  Worst case: O(n2) 
How long do the deletions take?  No time at all!
What algorithm is this?
a. Insertion Sort
b. Selection Sort
c. Heap Sort
d. Merge Sort
e. None of these
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“PQSort” Build with 
Heap MAX-PQ

9 4 8 1 6 10 12 13 2 3 14 20 75
1 2 3 4 5 6 7 8 9 10 11 120 13

13 14 12 3 6 10 9 8 2 1 4 5 720

PQ

Floyd’s Algorithm

Takes only O(n) time! 19



“PQSort” deleteMaxes with 
Heap MAX-PQ

1 2 3 4 5 6 7 8 9 10 11 120 13

13 14 12 3 6 10 9 8 2 1 4 5 720

PQ
13 10 12 3 6 7 9 8 2 1 4 5 2014

PQ
12 10 9 3 6 7 5 8 2 1 4 14 2013

PQ
9 10 8 3 6 7 5 4 2 1 13 14 2012

PQ
Totally incomprehensible as an array!
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“PQSort” deleteMaxes with 
Heap MAX-PQ

321312

10618

49

5

9 4 8 1 6 10 12 13 2 3 14 20 75

72014 21



“PQSort” deleteMaxes with 
Heap MAX-PQ

321312

10618

49

5

72014 1289

106312

1413

20

754

Build Heap

Note: 9 ends up being perc’d down as well since its invariant is violated by the time we reach it.
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“PQSort” deleteMaxes with 
Heap MAX-PQ

1289

106312

1413

20

754 1289

76312

1013

14

54 20 1285

7639

1012

13

4 14 20

1245

7638

109

12

13 14 20245

1638

79

10

12 13 14 2042

1635

78

9

10 12 13 14 20



“PQSort” with Heap MAX-PQ

How long does “build” take?  Worst case: O(n) 
How long do the deletions take?  Worst case: O(n lg n) 
What algorithm is this?
a. Insertion Sort
b. Selection Sort
c. Heap Sort
d. Merge Sort
e. None of these

42

1635

78

9

10 12 13 14 20

8 7 5 3 6 1 2 4 10 12 13 14 209

PQ Result
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“PQSort”

Sort(elts):
pq = new PQ
for each elt in elts:
pq.insert(elt);

sortedElts = new array of size elts.length
for i = 0 to elements.length – 1:
sortedElts[i] = pq.deleteMin

return sortedElts

What sorting algorithm is this?
a. Insertion Sort
b. Selection Sort
c. Heap Sort
d. Merge Sort
e. None of these
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CS221: Algorithms and 
Data Structures

Sorting Things Out
(slides stolen from Steve Wolfman

with minor tweaks by Alan Hu)
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Today’s Outline

• Categorizing/Comparing Sorting Algorithms
– PQSorts as examples

• MergeSort
• QuickSort
• More Comparisons
• Complexity of Sorting
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Categorizing Sorting Algorithms

• Computational complexity
– Average case behaviour: Why do we care?  
– Worst/best case behaviour: Why do we care?  How 

often do we resort sorted, reverse sorted, or “almost” 
sorted (k swaps from sorted where k << n) lists?

• Stability: What happens to elements with identical keys? 

• Memory Usage: How much extra memory is used?

28



Comparing our “PQSort” 
Algorithms

• Computational complexity
– Selection Sort: Always makes n passes with a 

“triangular” shape.  Best/worst/average case Θ(n2)
– Insertion Sort: Always makes n passes, but if we’re 

lucky (and do linear search from left), only constant 
work is needed on each pass.  Best case Θ(n); 
worst/average case: Θ(n2)

– Heap Sort: Always makes n passes needing O(lg n) on 
each pass.  Best/worst/average case: Θ(n lg n).

29
Note: best cases assume distinct elements.

With identical elements, Heap Sort can get Θ(n) performance.



Insertion Sort Best Case

30

2 3 4 5 6 7 8 9 10 11 12 13 141
1 2 3 4 5 6 7 8 9 10 11 120 13

PQ

PQ

PQ

PQ

2 3 4 5 6 7 8 9 10 11 12 13 141

2 3 4 5 6 7 8 9 10 11 12 13 141

2 3 4 5 6 7 8 9 10 11 12 13 141

If we do linear search from the left: constant time per pass!



Comparing “PQSort” Algorithms

• Stability
– Selection: Easily made stable (when building from the 

right, prefer the rightmost of identical “biggest” keys).
– Insertion: Easily made stable (when building from the 

right, find the leftmost slot for a new element).
– Heap: Unstable 

• Memory use: All three are essentially “in-place” 
algorithms with small O(1) extra space requirements.

• Cache access: Not detailed in 221, but… algorithms that 
don’t “jump around” tend to perform better in modern 
memory systems.  Which of these “jumps around”? 31



Comparison of growth...

nlgn
n2

n

n=100

T(
n)

=1
00
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Today’s Outline

• Categorizing/Comparing Sorting Algorithms
– PQSorts as examples

• MergeSort
• QuickSort
• More Comparisons
• Complexity of Sorting
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MergeSort

Mergesort belongs to a class of algorithms known as 
“divide and conquer” algorithms (your recursion 
sense should be tingling here...).

The problem space is continually split in half, 
recursively applying the algorithm to each half 
until the base case is reached.

34



MergeSort Algorithm

1. If the array has 0 or 1 elements, it’s sorted.  Else…

2. Split the array into two halves

3. Sort each half recursively (i.e., using mergesort)

4. Merge the sorted halves to produce one sorted result: 
1. Consider the two halves to be queues.

2. Repeatedly compare the fronts of the queues.  Whichever is 
smaller (or, if one is empty, whichever is left), dequeue it 
and insert it into the result.
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MergeSort Performance Analysis

1. If the array has 0 or 1 elements, it’s sorted.  Else…

2. Split the array into two halves

3. Sort each half recursively (i.e., using mergesort)

4. Merge the sorted halves to produce one sorted result: 
1. Consider the two halves to be queues.

2. Repeatedly compare the fronts of the queues.  Whichever is 
smaller (or, if one is empty, whichever is left), dequeue it 
and insert it into the result.

T(1) = 1

2*T(n/2) 

n

36



MergeSort Performance Analysis
T(1) = 1
T(n) = 2T(n/2) + n

= 4T(n/4) + 2(n/2) + n
= 8T(n/8) + 4(n/4) + 2(n/2) + n
= 8T(n/8) + n + n + n = 8T(n/8) + 3n
= 2iT(n/2i) + in.

Let i = lg n
T(n) = nT(1) + n lg n = n + n lg n ∈ Θ(n lg n)

We ignored floors/ceilings.  To prove performance formally, we’d use 
this as a guess and prove it with floors/ceilings by induction.37



Consider the following array of integers: 

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

-4 3 5 7 6 9 1 2

-4 3 5 7 1 2 6 9

-4 1 2 3 5 6 7 9
38



Mergesort:

void msort(int x[], int lo, int hi, int tmp[]) {
if (lo >= hi) return;
int mid = (lo+hi)/2;
msort(x, lo, mid, tmp);
msort(x, mid+1, hi, tmp);
merge(x, lo, mid, hi, tmp);

}

void mergesort(int x[], int n) {
int *tmp = new int[n];
msort(x, 0, n-1, tmp);
delete[] tmp;

}
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Merge:

void merge(int x[],int lo,int mid,int hi,
int tmp[]) 

{
int a = lo, b = mid+1;
for( int k = lo; k <= hi; k++ )
{
if( a <= mid && (b > hi || x[a] < x[b]) )

tmp[k] = x[a++];  
else tmp[k] = x[b++];

}
for( int k = lo; k <= hi; k++ )
x[k] = tmp[k];

} 

40



3 -4 7 5 9 6 2 1

-4 3

-4 3 7 5 9 6 2 1

x:

tmp:

x:

merge( x, 0, 0, 1, tmp ); // step *

merge( x, 4, 5, 7, tmp ); // step **

-4 3 5 7 6 9 1 2

-4 3 5 7 1 2 6 9

x:

tmp:

x:

1 2 6 9

merge( x, 0, 3, 7, tmp ); // will be the final step
41



Today’s Outline

• Categorizing/Comparing Sorting Algorithms
– PQSorts as examples

• MergeSort
• QuickSort
• More Comparisons
• Complexity of Sorting

42



QuickSort

In practice, one of the fastest sorting algorithms is 
Quicksort, developed in 1961 by C.A.R. Hoare.

Comparison-based: examines elements by 
comparing them to other elements

Divide-and-conquer: divides into “halves” (that may 
be very unequal) and recursively sorts

43



QuickSort algorithm

• Pick a pivot
• Reorder the list such that all elements < pivot are 

on the left, while all elements >= pivot are on the 
right

• Recursively sort each side

Are we missing a base case?44



Partitioning

• The act of splitting up an array according to the 
pivot is called partitioning

• Consider the following:

-4 1 -3 2 3 5 4 7

left partition right partition
pivot

45



QuickSort Visually

P

P PP

P P P P

Sorted!
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QuickSort (by Jon Bentley):

void qsort(int x[], int lo, int hi)
{

int i, p;
if (lo >= hi) return;
p = lo;
for( i=lo+1; i <= hi; i++ )

if( x[i] < x[lo] ) swap(x[++p], x[i]);
swap(x[lo], x[p]);
qsort(x, lo, p-1);
qsort(x, p+1, hi);

}

void quicksort(int x[], int n) {
qsort(x, 0, n-1);

}
47



QuickSort (by Jon Bentley): (Loop invariant by Alan!)

void qsort(int x[], int lo, int hi)
{

int i, p;
if (lo >= hi) return;
p = lo;
for( i=lo+1; i <= hi; i++ )

// x[lo+1..p] contains all elements of
// x[lo+1..i-1] that are less than x[lo]
if( x[i] < x[lo] ) swap(x[++p], x[i]);

swap(x[lo], x[p]);
qsort(x, lo, p-1);
qsort(x, p+1, hi);

}

48



QuickSort Example (using Bentley’s Algorithm)

2 -4 6 1 5 -3 3 7
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QuickSort: Complexity

• In our partitioning task, we compared each
element to the pivot
– Thus, the total number of comparisons is N
– As with MergeSort, if one of the partitions is about half 

(or any constant fraction of) the size of the array, 
complexity is Θ(n lg n).

• In the worst case, however, we end up with a 
partition with a 1 and n-1 split

50



QuickSort Visually: Worst case

P

P

P

P
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QuickSort: Worst Case

• In the overall worst-case, this happens at every 
step…
– Thus we have N comparisons in the first step
– N-1 comparisons in the second step
– N-2 comparisons in the third step
– :

– …or O(n2)



 

n + (n −1) ++ 2 +1=
n(n +1)

2
=

n2

2
+

n
2

...
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QuickSort: Average Case 
(Intuition)

• Clearly pivot choice is important
– It has a direct impact on the performance of the sort
– Hence, QuickSort is fragile, or at least “attackable”

• So how do we pick a good pivot?

53



QuickSort: Average Case 
(Intuition)

• Let’s assume that pivot choice is random
– Half the time the pivot will be in the centre half of the 

array

– Thus at worst the split will be n/4 and 3n/4

54



QuickSort: Average Case 
(Intuition)

• We can apply this to the notion of a good split
– Every “good” split: 2 partitions of size n/4 and 3n/4

• Or divides N by 4/3

– Hence, we make up to log4/3(N) splits
• Expected # of partitions is at most 2 * log4/3(N)

– O(logN)
• Given N comparisons at each partitioning step, we 

have Θ(N log N)
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Today’s Outline

• Categorizing/Comparing Sorting Algorithms
– PQSorts as examples

• MergeSort
• QuickSort
• More Comparisons
• Complexity of Sorting
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How Do Quick, Merge, Heap, Insertion, 
and Selection Sort Compare?

Complexity
– Best case: Insert < Quick, Merge, Heap < Select
– Average case: Quick, Merge, Heap < Insert, Select
– Worst case: Merge, Heap < Quick, Insert, Select
– Usually on “real” data: Quick < Merge < Heap < I/S
– On very short lists: quadratic sorts may have an 

advantage (so, some quick/merge implementations 
“bottom out” to these as base cases)

Some details depend on implementation!
(E.g., an initial check whether the last elt of the left sublist is less 

than first of the right can make merge’s best case linear.)57

(not asymptotic)



How Do Quick, Merge, Heap, Insertion, 
and Selection Sort Compare?

Stability
– Easily Made Stable: Insert, Select, Merge (prefer the 

“left” of the two sorted sublists on ties)
– Unstable: Heap
– Challenging to Make Stable: Quick

• Memory use:
– Insert, Select, Heap < Quick < Merge

58
How much stack space does recursive QuickSort use?

In the worst case?  Could we make it better?



Today’s Outline

• Categorizing/Comparing Sorting Algorithms
– PQSorts as examples

• MergeSort
• QuickSort
• More Comparisons
• Complexity of Sorting
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Complexity of Sorting Using 
Comparisons as a Problem

Each comparison is a “choice point” in the algorithm.  
You can do one thing if the comparison is true and 
another if false.  So, the whole algorithm is like a 
binary tree…

……

sorted!z < cc < dsorted!

a < da < b

x < y

……

yes no

yes no yes no

yes noyes no
60



Complexity of Sorting Using 
Comparisons as a Problem

The algorithm spits out a (possibly different) sorted 
list at each leaf.  What’s the maximum number of 
leaves?

……

sorted!z < cc < dsorted!

a < da < b

x < y

……

yes no

yes no yes no

yes noyes no
61



Complexity of Sorting Using 
Comparisons as a Problem

There are n! possible permutations of a sorted list (i.e., 
input orders for a given set of input elements).  How 
deep must the tree be to distinguish those input 
orderings?

……

sorted!z < cc < dsorted!

a < da < b

x < y

……

yes no

yes no yes no

yes noyes no
62



Complexity of Sorting Using 
Comparisons as a Problem

If the tree is not at least lg(n!) deep, then there’s some 
pair of orderings I could feed the algorithm which 
the algorithm does not distinguish.  So, it must not 
successfully sort one of those two orderings. 

……

sorted!z < cc < dsorted!

a < da < b

x < y

……

yes no

yes no yes no

yes noyes no
63



Complexity of Sorting Using 
Comparisons as a Problem

QED: The complexity of sorting using comparisons is 
Ω(n lg n) in the worst case, regardless of algorithm!

In general, we can lower-bound but not upper-bound
the complexity of problems.

(Why not?  Because I can give as crappy an algorithm 
as I please to solve any problem.)
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