
CS221: Algorithms and
Data Structures

Recursion and Iteration

Alan J. Hu
(Borrowing many slides from Steve Wolfman)

1

Learning Goals
By the end of this unit, you will be able to…

• Describe the relationship between recursion/iteration and
induction (e.g., take a recursive code fragment and express
it mathematically in order to prove its correctness
inductively)

• Evaluate the effect of recursion on space complexity
• Describe how tail recursive algorithms can require less

space
• Recognize algorithms as recursive or iterative
• Convert between recursive and iterative solutions
• Draw a recursion tree, and relate the depth to the number

of recursive calls, and the size of the runtime stack
• Identify or produce an example of infinite recursion

Thinking Recursively

DO NOT START WITH CODE. Instead, write
the story of the problem, in natural language.

Define the problem: What should be done given a
particular input?

Identify and solve the (usually simple) base case(s).
Start solving a more complex version.
As soon as you break the problem down in terms of

any simpler version, call the function recursively
and assume it works. Do not think about how!

3

Thinking Recursively

DO NOT START WITH CODE. Instead, write
the story of the problem, in natural language.

Define the problem: What should be done given a
particular input?

Identify and solve the (usually simple) base case(s).
Start solving a more complex version.
As soon as you break the problem down in terms of

any simpler version, call the function recursively
and assume it works. Do not think about how!

4

This is the secret to thinking recursively!

Your solution will work as long as:

(1) you’ve broken down the problem right

(2) each recursive call really is simpler/smaller, and

(3) you make sure all calls will eventually hit base case(s).

How a Computer Does Recursion

• This is NOT a good way to “understand recursion”!!!

How a Computer Does Recursion

• This is NOT a good way to “understand recursion”!!!
• But understanding how a computer actually does

recursion IS important to understand the time and
space complexity of recursive programs, and how to
make them run better.

Function/Method Calls

• A function or method call is an interruption or
aside in the execution flow of a program:

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

Function Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for your

help moving some stuff.
– Your buddy calls.
– The doorbell rings.

Function Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for you

help moving some stuff.
– Your buddy calls.
– The doorbell rings.

• You stop what you’re doing, you memorize where
you were in your task, you handle the interruption,
and then you go back to what you were doing.

Function Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for you

help moving some stuff.
– Your buddy calls.
– The doorbell rings.

• You stop what you’re doing, you memorize where
you were in your task, you handle the interruption,
and then you go back to what you were doing.

LIFO!
That’s a stack!

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 26

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 20lbs of steer manure to the garden.

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

I am listening to my buddy tell some inane story about last night.

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

I am signing for a FedEx package.

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy has finally finished his story…

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 60lbs of steer manure to the garden.

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 80lbs of steer manure to the garden.

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 28

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

Activation Records in Daily Life

I have finished my stack.cpp file!

Activation Records in Daily Life

Activation Records on a Computer

• A computer handles function/method calls in
exactly the same way! (Also, “interrupts”)

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=?, b=?, c=?, d=?

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=?, c=?, d=?

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=?, d=?

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=?, d=?

x=3,y=6

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=?, d=?

x=1,y=7

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=?, d=?

x=0,y=8

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=?, d=?

x=0,y=8

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=?, d=?

return 8

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=8, d=?

Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=8, d=9

Recursion is handled the same way!

n=4

Recursion is handled the same way!

n=4

Recursion is handled the same way!

n=4

Recursion is handled the same way!

n=4

n=3

Recursion is handled the same way!

n=4

n=3

Recursion is handled the same way!

n=4

n=3

Recursion is handled the same way!

n=4

n=3

n=2

Recursion is handled the same way!

n=4

n=3

n=2

Recursion is handled the same way!

n=4

n=3

return 1

Recursion is handled the same way!

n=4

n=3, result=1+…

Recursion is handled the same way!

n=4

n=3, result=1+…

n=1

Recursion is handled the same way!

n=4

n=3, result=1+…

return 1

Recursion is handled the same way!

n=4

n=3, result=1+1

Recursion is handled the same way!

n=4

return 2

Recursion is handled the same way!

n=4, result=2+…

Recursion is handled the same way!

n=4, result=2+…

Recursion is handled the same way!

n=4, result=2+…

n=2

Recursion is handled the same way!

n=4, result=2+…

n=2

Recursion is handled the same way!

n=4, result=2+…

return 1

Recursion is handled the same way!

n=4, result=2+1

Recursion is handled the same way!

return 3

Recursion is handled the same way!

As I said before, do NOT try to think about recursion this way!

Recursion is handled the same way!

As I said before, do NOT try to think about recursion this way!

However, by seeing what the computer does, we can see what
takes time and space:

Each call takes time. We will try to avoid wasted calls.
The max depth of the call stack is the max space,

because each activation record takes O(1) space.

Aside: Activation Records and
Computer Security

• Have you heard about “buffer overrun” attacks?
• Suppose, when talking to your buddy, he manages

to make you forget what you were in the middle of
doing before his call?

• Suppose a function messes up the return address in
the call stack?

Aside: Computer Security

n=4, result=2+…

n=2

Aside: Computer Security

n=4, result=2+…

n=2

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…

Aside: Computer Security

n=4, result=2+…

n=2

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…

Aside: Computer Security

n=4, result=2+…

return 1

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…

Aside: Computer Security

n=4, result=2+…

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…

Limits of the Call Stack
int fib(int n) {
if (n == 1) return 1;
else if (n == 2) return 1;
else return fib(n-1) + fib(n-2);

}
cout << fib(0) << endl;

70

What will happen?
a. Returns 1 immediately.
b. Runs forever (infinite recursion)
c. Stops running when n “wraps around” to positive values.
d. Bombs when the computer runs out of stack space.
e. None of these.

Function Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for your

help moving some stuff.
– Your buddy calls.
– The doorbell rings.

Tail Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for your

help moving some stuff.
– Your buddy calls.
– The doorbell rings.

• If new task happens just as you finish previous
task, there’s no need for new activation record.

• These are called tail calls.

Why Tail Calls Matter

• Since a tail call doesn’t need to generate a new
activation record on the stack, a good compiler
won’t make the computer do that.

• Therefore, a tail call doesn’t increase depth of call
stack.

• Therefore, the program uses less space if you can
set it up to use a tail call.

Managing the Call Stack:
Tail Recursion

void endlesslyGreet()
{
cout << "Hello, world!" << endl;
endlesslyGreet();

}

This is clearly infinite recursion. The call stack will
get as deep as it can get and then bomb, right?

But... why? What work is the call stack doing?
There’s nothing to remember on the stack!

74
Try compiling it with at least –O2 optimization and running.

It won’t give a stack overflow!

Tail Recursion
A function is “tail recursive” if for every recursive

call in the function, that call is the absolute last
thing the function needs to do before returning.

In that case, why bother pushing a new stack frame?
There’s nothing to remember. Just re-use the old
frame.

That’s what most compilers will do.

75

Tail Recursion
A function is “tail recursive” if for every recursive

call in the function, that call is the absolute last
thing the function needs to do before returning.

In that case, why bother pushing a new stack frame?
There’s nothing to remember. Just re-use the old
frame.

That’s what most compilers will do.

76

Note: KW textbook is WRONG on definition of tail recursion!
They say it’s based on the last line, and the example they give is
NOT tail recursive!

Tail Recursive?
int fib(int n) {
if (n <= 2) return 1;
else return fib(n-1) + fib(n-2);

}

Tail recursive?
a. Yes.
b. No.
c. Not enough information.

77

Tail Recursive?
int factorial (int n) {
if (n == 0) return 1;
else return n * factorial(n – 1);

}

Tail recursive?
a. Yes.
b. No.
c. Not enough information.

78

Tail Recursive?
int fact(int n) { return fact_acc(n, 1); }

int fact_acc (int n, int acc) {
if (n == 0) return acc;
else return fact_acc(n – 1, acc * n);

}

Tail recursive?
a. Yes.
b. No.
c. Not enough information. 79

Mythbusters:
Recursion vs. Iteration

Which one can do more? Recursion or iteration?

80

MythBusters:
Simulating a Loop with Recursion

int i = 0
while (i < n)
doFoo(i)
i++

recDoFoo(0, n)

Where recDoFoo is:

void recDoFoo(int i, int n)
{
if (i < n) {

doFoo(i)
recDoFoo(i + 1, n)

}
}

81Anything we can do with iteration, we can do with recursion.

Mythbusters:
Recursion vs. Iteration

Which one can do more? Recursion or iteration?

So, since iteration is just a special case of recursion
(when it’s tail recursive), recursion can do more.

But…

82

Mythbusters:
Recursion vs. Iteration

Which one can do more? Recursion or iteration?

So, since iteration is just a special case of recursion
(when it’s tail recursive), recursion can do more.

But… If you have a stack (or can implement one
somehow), iteration with a stack can do anything
recursion can!

83

Mythbusters:
Recursion vs. Iteration

Which one can do more? Recursion or iteration?

So, since iteration is just a special case of recursion
(when it’s tail recursive), recursion can do more.

But… If you have a stack (or can implement one
somehow), iteration with a stack can do anything
recursion can!
– (Aside: If you are developing a new computational

paradigm, e.g., with DNA, being able to simulate a
stack is a key building block.)

84

Mythbusters:
Recursion vs. Iteration

Which one can do more? Recursion or iteration?

So, since iteration is just a special case of recursion
(when it’s tail recursive), recursion can do more.

But… If you have a stack (or can implement one
somehow), iteration with a stack can do anything
recursion can!
– This can be a little tricky.
– Better to let the computer do it for you! 85

Simulating Recursion with a Stack

• What does a recursive call do?
– Saves current values of local variables and where

execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

• What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

• We can do on a stack what the computer does for
us on the system stack…

Simulating Recursion with a Stack

• Cut the function at each call or return, into little pieces of
code. Give each piece a name.

• Create a variable pc, which will hold the name of the piece
of code to run.

• Put all the pieces in a big loop. At the top of the loop,
choose which piece to run based on pc.

• At each recursive call, push local variables, push name of
code to run after return, push arguments, set pc to Start.

• At Start, pop function arguments.
• At other labels, pop return value, pop local variables.
• At return, pop “return address” into pc, push return value.

This is not something we expect you to do in full generality in CPSC 221.

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

88

Anything we can do with recursion,
we can do with iteration w/ a stack.

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

89Done
2

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

90Done

n=2

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

91Done

n=2

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

92Done

n=2

2

Middle

1

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

93Done

n=2

2

Middle

1

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

94Done

n=2

2

Middle

1

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

95Done

n=1

2

Middle

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

96Done

n=1

2

Middle

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

97Done

n=1

2

Middle

1

Middle

0

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

98Done

n=1

2

Middle

1

Middle

0

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

99Done

n=0

2

Middle

1

Middle

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

100Done

n=0, pc=Middle

2

Middle

1

1

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

101Done

n=0, pc=Middle

2

Middle

1

1

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

102Done

result=1, oldn=1,
n=0, pc=Middle

2

Middle

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

103Done

result=1, oldn=1,
n=0, pc=Middle

2

Middle

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

104Done

result=1, oldn=1,
n=0, pc=Middle

2

1

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

105Done

result=1, oldn=1,
n=0, pc=Middle

2

1

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

106Done

result=1, oldn=2,
n=0, pc=Middle

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

107Done

result=2, oldn=2,
n=0, pc=Middle

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

1082

result=2, oldn=2,
n=0, pc=Done

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

1092

result=2, oldn=2,
n=0, pc=Done

Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
} // result is on top of stack

1102

result=2, oldn=2,
n=0, pc=Done

This is not something we expect
you to do in full generality in
CPSC 221.

Steve’s Fib Example

Computer handles recursion on the stack.
Sometimes you can see a clever shortcut to do it a bit

more efficiently by only storing what’s really
needed on the stack:

int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result 111OK, this is cheating a bit (in a good way).
To get down and dirty, see continuations in CPSC 311.

We will prove that
Steve’s program
works next time.

Simulating Recursion with a Stack

• What does a recursive call do?
– Saves current values of local variables and where

execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

• What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

• We can do on a stack what the computer does for
us on the system stack…

Simulating Tail Recursion w/o Stack

• What does a recursive call do?
– Saves current values of local variables and where

execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

• What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

• Why use a stack if you don’t have to do any
saving or restoring???

Tail Recursion into Iteration

114

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
if (n == 0) return acc;
else
return fact_acc(n – 1, acc * n);

}

Tail Recursion into Iteration – Step 1

115

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
if (n == 0) return acc;
else {
//return fact_acc(n – 1, acc * n);
acc = acc * n;
n = n-1;

}
}

Assign parameters
their passed-in values

Tail Recursion into Iteration – Step 1

116

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {

if (n == 0) return acc;
else {
//return fact_acc(n – 1, acc * n);
acc = acc * n;
n = n-1;

}

}

Assign parameters
their passed-in values

Tail Recursion into Iteration – Step 2

117

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
while (1) {
if (n == 0) return acc;
else {
//return fact_acc(n – 1, acc * n);
acc = acc * n;
n = n-1;

}
}
}

Start executing at
beginning of function.

Tail Recursion into Iteration – Step 3

118

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
while (n != 0) {
//if (n == 0) return acc;
//else {
//return fact_acc(n – 1, acc * n);
acc = acc * n;
n = n-1;

//}
}
return acc;
}

Clean up your code
to look nicer.

Tail Recursion into Iteration – Step 3

119

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
while (n != 0) {
acc = acc * n;
n = n-1;

}
return acc;

}

Clean up your code
to look nicer.

Tail Recursion into Iteration

120

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
while (n != 0) {
acc = acc * n;
n = n-1;

}
return acc;

}

For 221, you should be able to look at a simple tail-recursive
function and convert it to be iterative.

Today’s Learning Goals

• See the similarity between a recursive function
and a proof by induction.

• Prove recursive functions correct using induction.
• Prove loops correct using loop invariants.
• Appreciate how a proof can help you understand

complicated code.

• (If we have time, use memoization to make
recursive functions run faster.)

121

Induction and Recursion,
Twins Separated at Birth?

Base case
Prove for some small

value(s).

Inductive Step
Otherwise, break a larger

case down into smaller
ones that we assume work
(the Induction Hypothesis).

Base case
Calculate for some small

value(s).

Recursion
Otherwise, break the problem

down in terms of itself
(smaller versions) and
then call this function to
solve the smaller versions,
assuming it will work.

122

Old Slide: Thinking Recursively

DO NOT START WITH CODE. Instead, write
the story of the problem, in natural language.

Define the problem: What should be done given a
particular input?

Identify and solve the (usually simple) base case(s).
Start solving a more complex version.
As soon as you break the problem down in terms of

any simpler version, call the function recursively
and assume it works. Do not think about how!

123

This is the secret to thinking recursively!

Your solution will work as long as:

(1) you’ve broken down the problem right

(2) each recursive call really is simpler/smaller, and

(3) you make sure all calls will eventually hit base case(s).

Thinking Inductively

DO NOT START WITH CODE. Instead, write
the story of the problem, in natural language.

Define the problem: What should be done given a
particular input?

Identify and solve the (usually simple) base case(s).
Start solving a more complex version.
As soon as you break the problem down in terms of

any simpler version, use the inductive hypothesis
and assume it works. Do not think about how!

124

This is also the secret to doing a proof by induction!

Your solution will work as long as:

(1) you’ve broken down the problem right

(2) inductive assumption on cases that really are simpler/smaller,

(3) you make sure you’ve covered all base case(s).

Induction and Recursion

• They even have the same pitfalls!
• When is it hard to do a proof by induction?

• When is it hard to solve a problem with recursion?

Induction and Recursion

• They even have the same pitfalls!
• When is it hard to do a proof by induction?

– When you can’t figure out how to break the problem
down

– When you miss a base case
• When is it hard to solve a problem with recursion?

– When you can’t figure out how to break the problem
down

– When you miss a base case

Proving a Recursive Function
Correct with Induction is EASY

Just follow your code’s lead and use induction.

Your base case(s)? Your code’s base case(s).

How do you break down the inductive step? However
your code breaks the problem down into smaller
cases.

What do you assume? That the recursive calls just work
(for smaller input sizes as parameters, which better be
how your recursive code works!).

127

Proving a Recursive Function
Correct with Induction is EASY

// Precondition: n >= 0.
// Postcondition: returns n!
int factorial(int n)
{

if (n == 0)
return 1;

else
return n*factorial(n-1);

}

Prove: factorial(n) = n!
Base case: n = 0.
Our code returns 1 when n =

0, and 0! = 1 by definition.

Inductive step: For any
k > 0, our code returns
k*factorial(k-1). By IH,
factorial(k-1) = (k-1)!
and k! = k*(k-1)! by
definition. QED 128

Perfect Card Shuffling

Problem: You have an array of n playing cards.
You want to shuffle them so that every order is
equally likely. You may use a function
randrange(n), which selects a number [0,n)
uniformly at random.

129

Proving A Recursive
Algorithm Works

Problem: Prove that our algorithm for card shuffling
gives an equal chance of returning every possible
shuffle (assuming randrange(n) works as
advertised).

130

Recurrence Relations…
Already Covered

See METYCSSA #5-7.
Additional Problem: Prove binary search takes O(lg n) time.

// Search array[left..right] for target.
// Return its index or the index where it should go.
int bSearch(int array[], int target, int left, int right)
{

if (right < left) return left;
int mid = (left + right) / 2;
if (target <= array[mid])

return bSearch(array, target, left, mid-1);
else

return bSearch(array, target, mid+1, right);
}

131

Binary Search Problem (Worked)
Note: Let n be # of elements considered in the array (right – left + 1).

int bSearch(int array[], int target, int left, int right)
{

if (right < left) return left;
int mid = (left + right) / 2;
if (target <= array[mid])

return bSearch(array, target, left, mid-1);
else

return bSearch(array, target, mid+1, right);
}

132

O(1), base case
O(1)

O(1)
~T(n/2)

~T(n/2)

Binary Search Problem (Worked)
For n=0: T(0) = 1
For n>0: T(n) = T(n/2) + 1

To guess at the answer, we simplify:

For n=1: T(1) = 1
For n>1: T(n) = T(n/2) + 1
T(n) = (T(n/4) + 1) + 1
T(n) = T(n/4) + 2
T(n) = T(n/8) + 3
T(n) = T(n/16) + 4
T(n) = T(n/(2i)) + i

133

Sub in T(n/2) = T(n/4)+1

Change n/2 to n/2.
Change base case to T(1)
(We’ll never reach 0 by dividing by 2!)

Sub in T(n/4) = T(n/8)+1
Sub in T(n/8) = T(n/16)+1

Binary Search Problem (Worked)

To guess at the answer, we simplify:

For n=1: T(1) = 1
For n>1: T(n) = T(n/2) + 1
For n>1: T(n) = T(n/(2i)) + i

To reach the base case, let n/2i = 1
n = 2i means i = lg n

T(n) = T(n/2lg n) + lg n = T(1) + lg n = lg n + 1
T(n) ∈ O(lg n)

134

Why did that work out so well?

Binary Search Problem (Worked)

To prove the answer, we use induction:

For n=0: T(0) = 1
For n>0: T(n) = T(n/2) + 1
T(1) = T(0) + 1 = 2
T(2) = T(3) = T(1) + 1 = 3.
Prove T(n) ∈ O(lg n)

Let c = 3, n0 = 2.
Base cases: T(2) = 3 = 3 lg 2
Base cases: T(3) = 3 ≤ 3 lg 3

135

Binary Search Problem (Worked)

To prove the answer, we use induction:

For n=0: T(0) = 1
For n>0: T(n) = T(n/2) + 1
T(1) = T(0) + 1 = 2
T(2) = T(3) = T(1) + 1 = 3.
Prove T(n) ∈ O(lg n)

Let c = 3, n0 = 2.
Base cases: T(2) = 3 = 3 lg 2
Base cases: T(3) = 3 ≤ 3 lg 3

136

Alan’s Aside: Note that
Steve used 2 and 3 as base
cases. Why? Because proof
doesn’t work at T(1).

Binary Search Problem (Worked)
T(0) = 1, T(1) = 2, T(2) = 3, T(3) = 3
For n>3: T(n) = T(n/2) + 1
c = 3, n0 = 2

Base cases: prev slides
Induction hyp: for all 2 ≤ k < n, T(k) ≤ 3 lg k
Inductive step, n > 3, in two cases (odd & even)
n is odd: T(n) = T((n-1)/2) + 1

≤ 3 lg((n-1)/2) + 1
= 3 lg(n-1) – 3 lg 2 + 1
= 3 lg(n-1) – 3 + 1
≤ 3 lg n

137

n ≥ 5, so
(n-1)/2 ≥ 2,
so IH applies

Binary Search Problem (Worked)
T(0) = 1, T(1) = 2, T(2) = 3, T(3) = 3
For n>3: T(n) = T(n/2) + 1
c = 3, n0 = 2

Base cases: prev slides
Induction hyp: for all 2 ≤ k < n, T(k) ≤ 3 lg k
Inductive step, n > 3, in two cases (odd & even)
n is even: T(n) = T(n/2) + 1

≤ 3 lg(n/2) + 1
= 3 lg n – 3 lg 2 + 1
= 3 lg n – 3 + 1
≤ 3 lg n

QED!
138

n ≥ 4, so
n/2 ≥ 2,
so IH applies

Proof of Iterative Programs?

• We’ve seen that iteration is just a special case of
recursion.

• Therefore, we should be able to prove that loops
work, using the same general technique.

• Because loops are a special case (and are easier to
analyze, so the theory was developed earlier),
there is different terminology, but it’s still
induction.

Loop Invariants

We do this by stating and proving “invariants”, properties that
are always true (don’t vary) at particular points in the
program.

One way of thinking of a loop is that at the start of each
iteration, the invariant holds, but then the loop breaks it as
it computes, and then spends the rest of the iteration fixing
it up.

Compare to the simplest induction you learned, where you
assume the case for n and prove for n+1. Now, we assume
a statement is true before each loop iteration, and prove it
is still true after the loop iteration.

140

Caution!
• The description of loop invariants in the Epp textbook is

slightly wrong and needlessly confusing:
– The invariant doesn’t need to be a predicate whose domain is

only an integer. Any predicate will work.
– It confuses the variables in the predicate with the number of

times the loop executes.
– It mixes up (1) proving that a predicate is a loop invariant with

(2) using the loop invariant to show that a program works.
– Termination should be handled separately from the reasoning

about loop invariants.
• If you want a written reference, the Wikipedia page for

“Loop Invariant” is correct.
141

Invariants in Daily Life

Suppose you have a bunch of house guests who are all
well-behaved, so they always put things that they use
back the way they found them.
• When you leave the house, you have put everything

just the way you like (toilet seat position, books on
the table, milk in the fridge, etc.)

• Where are they after your guests leave?
• Does it matter how many guests were there, or how

often they used your stuff?
142

More Interesting Examples

• When the police search for a fugitive, they:
1. establish a perimeter that contains the suspect,
2. maintain the invariant “The suspect is within the search

perimeter.” as they gradually shrink the perimeter.
• The same approach is used for fighting wildfires:

1. establish a perimeter that contains all burning areas,
2. maintain the invariant “All burning areas are within the

perimeter.” as they gradually shrink the perimeter.
The approach works regardless of how long it takes.

143

More Interesting Examples

• When the police search for a fugitive, they:
1. establish a perimeter that contains the suspect,
2. maintain the invariant “The suspect is within the search

perimeter.” as they gradually shrink the perimeter.
• The same approach is used for fighting wildfires:

1. establish a perimeter that contains all burning areas,
2. maintain the invariant “All burning areas are within the

perimeter.” as they gradually shrink the perimeter.
The approach works regardless of how long it takes.

Do you see the induction happening I these examples? 144

int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Convert for-loops to while-loops.
– Easiest to reason about while-loops.

Loop Invariants: The Easy Way

int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Write your loop invariant to be true at the exact same
time as you check the loop condition.
– In a while-loop, this is at the top/bottom of the loop body.
– No need to worry about the i++ in a for-loop

Loop Invariants: The Easy Way

int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Base Case: prove that your loop invariant holds
when you first arrive at the loop.

Loop Invariants: The Easy Way

int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Induction:
– Assume the loop invariant holds at top of loop.
– You also get to assume the loop condition is true. (Why?)
– Prove that loop invariant holds at bottom of loop.

Loop Invariants: The Easy Way

int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Finishing the proof:
– Upon exiting the loop, you can still assume loop invariant.
– You also get to assume the loop condition is false.
– Use those fact to prove whatever you need next.

Loop Invariants: The Easy Way

int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Termination:
– You may need to make a completely separate argument

that the loop will eventually terminate.
– Usually, this is by showing that some progress is always

made each time you go through the loop.

Loop Invariants: The Easy Way

Insertion Sort
for (int i = 1; i < length; i++)
{
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
}

Rewrite as while loop!

151

Insertion Sort
int i = 1;
while (i < length)
{
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Now, we need to come up with a good invariant.

152

Insertion Sort
int i = 1;
while (i < length)
// Invariant: here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

So, what’s the base case?
153

Insertion Sort
int i = 1;
while (i < length)
// Invariant: here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Base Case: When the code first reaches the loop
invariant i=1, so array[0..0] is trivially sorted. 154

Insertion Sort
int i = 1;
while (i < length)
// Invariant: here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Proof of inductive case is just like before.
155

Insertion Sort
int i = 1;
while (i < length)
// Invariant: here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Inductive Hypothesis: We assume array[0..i-1] is
sorted at top of loop, and i<length. 156

Insertion Sort
int i = 1;
while (i < length)
// Invariant: here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Inductive Step: bSearch finds correct index to put
array[i], so array[0..i] is sorted, then i++ happens…157

Insertion Sort
int i = 1;
while (i < length)
// Invariant: here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Inductive Step: … so loop invariant holds again at
the bottom of the loop. QED 158

Insertion Sort
int i = 1;
while (i < length)
// Invariant: here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

When loop exits, i==length. Invariant says array[0..i-1]
is sorted, so array[0..length-1] is sorted. 159

BTW, this “Easy Way” is at least as formal, precise,
and correct as any method where you see lots of math
flying around (like in the Epp textbook).

It’s also the basis for tools like Microsoft’s Static
Driver Verifier.

It’s also how Bob Floyd and Tony Hoare originally
formalized this.

Loop Invariants: The Easy Way

Aside: Formality vs. Sloppiness

• In real life, people are often a bit sloppy, just to make
things easier. That’s OK if you know what you’re doing.
When in doubt, fall back on the formal approach!
– If your very comfortable with for loops, you don’t have to rewrite

as a while loop.
– Getting all the details can be tricky, but the core idea of your loop

invariant is a GREAT comment to put in your code.

Aside: Formality vs. Looking Formal

• If you ever have to deal with a professor who thinks that a loop
invariant needs to have an induction variable (which is
incorrect, but not everyone knows this), just follow these steps:
– Say “Let k (or i or some other convenient mathy variable name)

represent the number of times the loop body executes. The proof is by
mathematical induction on k.” at the beginning of your proof.

– At the beginning of your base case, say “In the base case, k=0. When
the execution first reaches the top of the loop body…” and then fill in
the same base case you would have said doing things the easy way.

– For your induction step, say “We assume the loop invariant holds after
k executions of the loop body” at the beginning of the induction step.
Prove that it holds at the end of the loop body, and then say, “So we
see that the loop invariant still holds after k+1 executions of the loop
body. This concludes the proof by mathematical induction.”

Steve’s Practice:
Prove the Inner Loop Correct

for (int i = 1; i < length; i++)
{
// i went up by 1. The last element may be out of order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
// What’s the invariant? Something like
// “array[0..j-1] + array[j+1..i] = the old array[0..i-1]”
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
}

Prove by induction that the inner loop operates correctly.
(This may feel unrealistically easy!)

Finish the proof! (As we did for the outer loop, talk about
what the invariant means when the loop ends.)

163

Steve’s Practice (Solution):
Prove the Inner Loop Correct
// What’s the invariant? Something like
// “array[0..j-1] + array[j+1..i] = the old array[0..i-1]”
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

Base Case: At the start of the first iteration, j==i, so
array[0..j-1] is exactly array the old array[0..i-1].

Inductive Step: Assume the invariant holds at the top of the
loop. The invariant doesn’t care about array[j], so we can
overwrite it with array[j-1]. But after j--, the invariant
holds once again for the new j.

When the loop terminates, j==newIndex. Therefore,
array[0..newIndex-1] + array[newIndex+1..i] equals the
old array[0..i-1].

164

Steve’s Fib Example

Computer handles recursion on the stack.
Sometimes you can see a clever shortcut to do it a bit

more efficiently by only storing what’s really
needed on the stack:

int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result 165OK, this is cheating a bit (in a good way).
To get down and dirty, see continuations in CPSC 311.

We will prove that
Steve’s program
works next time.

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

166

Where does the loop invariant go?

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

167

Where does the loop invariant go?

What should the
invariant be?

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

168

This is the step that requires insight…
Hmm… I’m replacing n by n-1 and n-2, or I’m increasing result
when n<=2 (when fib(n)=1).

What should the
invariant be?

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

169

This is the step that requires insight…
So, it’s sort of like stuff on the stack, plus result doesn’t change...
Aha! Sum of fib(i) for all i on stack, plus result equals fib(n)

What should the
invariant be?

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

170

OK, so now, what’s the base case?

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

171

OK, so now, what’s the base case?
Initially, n is only item on stack, and result=0. fib(n)+0=fib(n).

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

172

OK, so now, what’s the base case?
Initially, n is only item on stack, and result=0. fib(n)+0=fib(n).

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Note that for a loop invariant proof,
the base case is NOT something like n=0.
The (implicit) induction variable is the
number of times through the loop!

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

173

And the inductive case?

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

174

And the inductive case? Assume inductive hypothesis.
We pop a number n off the stack. If n <=2, then fib(n)=1, so by
increasing result by 1, we maintain inductive hypothesis…

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

175

And the inductive case? Assume inductive hypothesis.
If n>2, we push n-1 and n-2. But since fib(n)=fib(n-1)+fib(n-2)
(by definition), the sum of fib(i) for all i on the stack is
unchanged.

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

176

And the inductive case? Assume inductive hypothesis.
If n>2, we push n-1 and n-2. But since fib(n)=fib(n-1)+fib(n-2)
(by definition), the sum of fib(i) for all i on the stack is
unchanged.

Sum of fib(i) for all i on stack,
plus result equals fib(n)

At this point, the “loop invariant” proof
itself is done!!! (You have proven by induction
that the loop invariant always holds.)
The next step is to use the loop invariant to prove
that the program works.

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

177

Sum of fib(i) for all i on stack,
plus result equals fib(n)

What can we conclude at loop
exit?

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

178

We still have loop invariant (since it’s invariant), and we have the
exit condition: isEmpty.

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Loop invariant holds, and
(not (not isEmpty))

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

179

Since stack is empty, sum of fib of stuff on stack is 0. So,
0+result=fib(n). Therefore, result=fib(n). QED

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Loop invariant holds, and
(not (not isEmpty))

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

180

The loop invariant helps us understand if/why the code works!
(BTW, loop invariants are great things to put in comments.)

Sum of fib(i) for all i on stack,
plus result equals fib(n)

Loop invariant holds, and
(not (not isEmpty))

Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

181

Termination for this example takes some work, too.
The key is that if you think of what’s on the stack as a string of
numbers, the stack contents always get earlier in “alphabetical
order”. E.g., [5] > [4,3] > [4,2,1] > [4,2] > [4] > [3,2] > [3] >…
This way of ordering is called “lexicographical order”.

Topic Change: Memoization

• This is an easy-to-program trick to make certain
kinds of recursive functions run a lot faster…

Accidentally Making Lots of
Recursive Calls; Recall...

int Fib(n)
if (n == 1 or n == 2) return 1
else return Fib(n - 1) + Fib(n - 2)

Finish the recursion tree for Fib(5)…

183

Fib
(5)

Fib
(4)

Fib
(3)

Avoiding Duplicate Calls

We’re making an exponential number of calls! This is bad.
Plus, many calls are duplicates… That means wasted work!

184

Fib
(5)

Fib
(4)

Fib
(3)

Fib
(2)

Fib
(1)

Fib
(5)

Fib
(4)

Fib
(3)

Fib
(2)

Fib
(1)

Fib
(3)

Fib
(2)

Fib
(1)

Fib
(2)

Memoization

• Keep a table of all calls you’ve computed already.
– Initially, this is empty.
– This trick only works if the number of possible calls is

much smaller than the total number of times you make
recursive calls.

• At start of function, check if you’ve solved this
case before. If so, return old solution.

• After computing a solution, store it in table before
returning. (Leave a “memo” to yourself.)

Fixing Fib with Recursion and
“Memoizing”

int[] fib_solns = new int[large_enough]; // init to 0
fib_solns[1] = 1;
fib_solns[2] = 1;
int fib_memo(int n)
{

// If we don’t know the answer…
if (fib_solns[n] == 0)
fib_solns[n] = fib_memo(n-1) +

fib_memo(n-2);
return fib_solns[n];

}

186

Fib
(5)

Fib
(4)

Fib
(3)

Fib
(2)

Fib
(1)

Aside: “Dynamic Programming”

• It turns out that you can often build up the table of
solutions iteratively, from the base cases up, instead of
using recursion.

• For historical reasons, this is called “dynamic
programming”. You’ll see this a lot in CPSC 320.

• The advantage of dynamic programming is that once you
see how the table is built up, you can often use much less
space, keeping only the parts that matter.

• The advantage of memoization, though, is that it’s very
easy to program.

Fixing Fib with “Dynamic
Programming”

int[] fib_solns = new int[large_enough]; // init to 0
fib_solns[1] = 1;
fib_solns[2] = 1;

int fib(int n) {
for (int i=3; i<=n; i++) {
fib_solns[i] = fib_solns[i-1] +

fib_solns[i-2];
}
return fib_solns[n];

}

188

Fib
(5)

Fib
(4)

Fib
(3)

Fib
(2)

Fib
(1)

Fixing Fib with “Dynamic
Programming” – Optimizing Space

int[] fib_solns = new int[2]; // init to 0
fib_solns[0] = 1;
fib_solns[1] = 1;

int fib(int n) {
for (int i=3; i<=n; i++) {
old_fib = fib_solns[0];
fib_solns[0] = fib_solns[1];
fib_solns[1] = fib_solns[0] +

old_fib;
}
return fib_solns[1];

}
189

Fib
(5)

Fib
(4)

Fib
(3)

Fib
(2)

Fib
(1)

	CS221: Algorithms and �Data Structures��Recursion and Iteration
	Learning Goals�By the end of this unit, you will be able to…
	Thinking Recursively
	Thinking Recursively
	How a Computer Does Recursion
	How a Computer Does Recursion
	Function/Method Calls
	Function Calls in Daily Life
	Function Calls in Daily Life
	Function Calls in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records in Daily Life
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Activation Records on a Computer
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Recursion is handled the same way!
	Aside: Activation Records and Computer Security
	Aside: Computer Security
	Aside: Computer Security
	Aside: Computer Security
	Aside: Computer Security
	Aside: Computer Security
	Limits of the Call Stack
	Function Calls in Daily Life
	Tail Calls in Daily Life
	Why Tail Calls Matter
	Managing the Call Stack: �Tail Recursion
	Tail Recursion
	Tail Recursion
	Tail Recursive?
	Tail Recursive?
	Tail Recursive?
	Mythbusters: �Recursion vs. Iteration
	MythBusters:�Simulating a Loop with Recursion
	Mythbusters: �Recursion vs. Iteration
	Mythbusters: �Recursion vs. Iteration
	Mythbusters: �Recursion vs. Iteration
	Mythbusters: �Recursion vs. Iteration
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Simulating Recursion with a Stack
	Steve’s Fib Example
	Simulating Recursion with a Stack
	Simulating Tail Recursion w/o Stack
	Tail Recursion into Iteration
	Tail Recursion into Iteration – Step 1
	Tail Recursion into Iteration – Step 1
	Tail Recursion into Iteration – Step 2
	Tail Recursion into Iteration – Step 3
	Tail Recursion into Iteration – Step 3
	Tail Recursion into Iteration
	Today’s Learning Goals
	Induction and Recursion, �Twins Separated at Birth?
	Old Slide: Thinking Recursively
	Thinking Inductively
	Induction and Recursion
	Induction and Recursion
	Proving a Recursive Function Correct with Induction is EASY
	Proving a Recursive Function Correct with Induction is EASY
	Perfect Card Shuffling
	Proving A Recursive �Algorithm Works
	Recurrence Relations… �Already Covered
	Binary Search Problem (Worked)
	Binary Search Problem (Worked)
	Binary Search Problem (Worked)
	Binary Search Problem (Worked)
	Binary Search Problem (Worked)
	Binary Search Problem (Worked)
	Binary Search Problem (Worked)
	Proof of Iterative Programs?
	Loop Invariants
	Caution!
	Invariants in Daily Life
	More Interesting Examples
	More Interesting Examples
	Loop Invariants: The Easy Way
	Loop Invariants: The Easy Way
	Loop Invariants: The Easy Way
	Loop Invariants: The Easy Way
	Loop Invariants: The Easy Way
	Loop Invariants: The Easy Way
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Loop Invariants: The Easy Way
	Aside: Formality vs. Sloppiness
	Aside: Formality vs. Looking Formal
	Steve’s Practice: �Prove the Inner Loop Correct
	Steve’s Practice (Solution): �Prove the Inner Loop Correct
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Steve’s Fib Example
	Topic Change: Memoization
	Accidentally Making Lots of Recursive Calls; Recall...
	Avoiding Duplicate Calls
	Memoization
	Fixing Fib with Recursion and “Memoizing”
	Aside: “Dynamic Programming”
	Fixing Fib with “Dynamic Programming”
	Fixing Fib with “Dynamic Programming” – Optimizing Space

