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Learning Goals
By the end of this unit, you will be able to…

• Describe the relationship between recursion/iteration and 
induction (e.g., take a recursive code fragment and express 
it mathematically in order to prove its correctness 
inductively)

• Evaluate the effect of recursion on space complexity
• Describe how tail recursive algorithms can require less 

space
• Recognize algorithms as recursive or iterative
• Convert between recursive and iterative solutions
• Draw a recursion tree, and relate the depth to the number 

of recursive calls, and the size of the runtime stack
• Identify or produce an example of infinite recursion



Thinking Recursively

DO NOT START WITH CODE. Instead, write 
the story of the problem, in natural language.

Define the problem: What should be done given a 
particular input?

Identify and solve the (usually simple) base case(s).
Start solving a more complex version.
As soon as you break the problem down in terms of 

any simpler version, call the function recursively 
and assume it works.  Do not think about how!
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This is the secret to thinking recursively!

Your solution will work as long as:

(1) you’ve broken down the problem right

(2) each recursive call really is simpler/smaller, and

(3) you make sure all calls will eventually hit base case(s).



How a Computer Does Recursion

• This is NOT a good way to “understand recursion”!!!



How a Computer Does Recursion

• This is NOT a good way to “understand recursion”!!!
• But understanding how a computer actually does 

recursion IS important to understand the time and 
space complexity of recursive programs, and how to 
make them run better.



Function/Method Calls

• A function or method call is an interruption or 
aside in the execution flow of a program:

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}



Function Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for your 

help moving some stuff.
– Your buddy calls.
– The doorbell rings.
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Function Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for you 

help moving some stuff.
– Your buddy calls.
– The doorbell rings.

• You stop what you’re doing, you memorize where 
you were in your task, you handle the interruption, 
and then you go back to what you were doing.

LIFO!
That’s a stack!
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Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy has finally finished his story…
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I am reading about the delete function in Koffman p. 28



Activation Records in Daily Life

I am working on line X of my stack.cpp file…



Activation Records in Daily Life

I have finished my stack.cpp file! 



Activation Records in Daily Life



Activation Records on a Computer

• A computer handles function/method calls in 
exactly the same way!  (Also, “interrupts”)



Activation Records on a Computer…
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a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {
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}
return y

}
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Activation Records on a Computer…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
while (x>0) {

y++;
x >>= 1;

}
return y

}

a=3, b=6, c=8, d=9
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Recursion is handled the same way!
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Recursion is handled the same way!

return 3



Recursion is handled the same way!

As I said before, do NOT try to think about recursion this way!



Recursion is handled the same way!

As I said before, do NOT try to think about recursion this way!

However, by seeing what the computer does, we can see what
takes time and space:

Each call takes time.  We will try to avoid wasted calls.
The max depth of the call stack is the max space,

because each activation record takes O(1) space.



Aside:  Activation Records and 
Computer Security

• Have you heard about “buffer overrun” attacks?
• Suppose, when talking to your buddy, he manages 

to make you forget what you were in the middle of 
doing before his call?

• Suppose a function messes up the return address in 
the call stack?



Aside:  Computer Security
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Aside:  Computer Security

n=4, result=2+…

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…



Limits of the Call Stack
int fib(int n) {
if (n == 1)      return 1;
else if (n == 2) return 1;
else             return fib(n-1) + fib(n-2);

}
cout << fib(0) << endl; 

70

What will happen?
a. Returns 1 immediately.
b. Runs forever (infinite recursion)
c. Stops running when n “wraps around” to positive values.
d. Bombs when the computer runs out of stack space.
e. None of these.



Function Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for your 

help moving some stuff.
– Your buddy calls.
– The doorbell rings.



Tail Calls in Daily Life

• How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for your 

help moving some stuff.
– Your buddy calls.
– The doorbell rings.

• If new task happens just as you finish previous 
task, there’s no need for new activation record.

• These are called tail calls.



Why Tail Calls Matter

• Since a tail call doesn’t need to generate a new 
activation record on the stack, a good compiler 
won’t make the computer do that.

• Therefore, a tail call doesn’t increase depth of call 
stack.

• Therefore, the program uses less space if you can 
set it up to use a tail call.



Managing the Call Stack: 
Tail Recursion

void endlesslyGreet()
{
cout << "Hello, world!" << endl;
endlesslyGreet();

}

This is clearly infinite recursion.  The call stack will 
get as deep as it can get and then bomb, right?

But... why?  What work is the call stack doing?
There’s nothing to remember on the stack!

74
Try compiling it with at least –O2 optimization and running. 

It won’t give a stack overflow!



Tail Recursion
A function is “tail recursive” if for every recursive 

call in the function, that call is the absolute last 
thing the function needs to do before returning.

In that case, why bother pushing a new stack frame?  
There’s nothing to remember.  Just re-use the old 
frame.

That’s what most compilers will do.
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Tail Recursion
A function is “tail recursive” if for every recursive 

call in the function, that call is the absolute last 
thing the function needs to do before returning.

In that case, why bother pushing a new stack frame?  
There’s nothing to remember.  Just re-use the old 
frame.

That’s what most compilers will do.
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Note:  KW textbook is WRONG on definition of tail recursion!  
They say it’s based on the last line, and the example they give is 
NOT tail recursive!



Tail Recursive?
int fib(int n) {
if (n <= 2) return 1;
else        return fib(n-1) + fib(n-2);

}

Tail recursive?
a. Yes.
b. No.
c. Not enough information.
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Tail Recursive?
int factorial (int n) {
if (n == 0) return 1;
else        return n * factorial(n – 1);

}

Tail recursive?
a. Yes.
b. No.
c. Not enough information.
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Tail Recursive?
int fact(int n) { return fact_acc(n, 1); }

int fact_acc (int n, int acc) {
if (n == 0) return acc;
else        return fact_acc(n – 1, acc * n);

}

Tail recursive?
a. Yes.
b. No.
c. Not enough information. 79



Mythbusters: 
Recursion vs. Iteration

Which one can do more?  Recursion or iteration?
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MythBusters:
Simulating a Loop with Recursion

int i = 0
while (i < n)
doFoo(i)
i++

recDoFoo(0, n)

Where recDoFoo is:

void recDoFoo(int i, int n)
{
if (i < n) {

doFoo(i)
recDoFoo(i + 1, n)

}
}

81Anything we can do with iteration, we can do with recursion.
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Mythbusters: 
Recursion vs. Iteration

Which one can do more?  Recursion or iteration?

So, since iteration is just a special case of recursion 
(when it’s tail recursive), recursion can do more.

But…  If you have a stack (or can implement one 
somehow), iteration with a stack can do anything 
recursion can!
– (Aside:  If you are developing a new computational 

paradigm, e.g., with DNA, being able to simulate a 
stack is a key building block.)
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Mythbusters: 
Recursion vs. Iteration

Which one can do more?  Recursion or iteration?

So, since iteration is just a special case of recursion 
(when it’s tail recursive), recursion can do more.

But…  If you have a stack (or can implement one 
somehow), iteration with a stack can do anything 
recursion can!
– This can be a little tricky.
– Better to let the computer do it for you! 85



Simulating Recursion with a Stack

• What does a recursive call do?
– Saves current values of local variables and where 

execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

• What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

• We can do on a stack what the computer does for 
us on the system stack…



Simulating Recursion with a Stack

• Cut the function at each call or return, into little pieces of 
code.  Give each piece a name.

• Create a variable pc, which will hold the name of the piece 
of code to run.

• Put all the pieces in a big loop.  At the top of the loop, 
choose which piece to run based on pc.

• At each recursive call, push local variables, push name of 
code to run after return, push arguments, set pc to Start.

• At Start, pop function arguments.
• At other labels, pop return value, pop local variables.
• At return, pop “return address” into pc, push return value.

This is not something we expect you to do in full generality in CPSC 221.



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

88

Anything we can do with recursion, 
we can do with iteration w/ a stack.



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
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continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack
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if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

92Done

n=2

2

Middle

1



Simulating Recursion with a Stack
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Simulating Recursion with a Stack

int factorial (int n) {
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}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

98Done

n=1

2

Middle

1

Middle

0



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

99Done

n=0

2

Middle

1

Middle



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

100Done

n=0, pc=Middle

2

Middle

1

1



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

101Done

n=0, pc=Middle

2

Middle

1

1



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

102Done

result=1, oldn=1,
n=0, pc=Middle

2

Middle



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

103Done

result=1, oldn=1,
n=0, pc=Middle

2

Middle



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

104Done

result=1, oldn=1,
n=0, pc=Middle

2

1



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

105Done

result=1, oldn=1,
n=0, pc=Middle

2

1



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

106Done

result=1, oldn=2,
n=0, pc=Middle



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

107Done

result=2, oldn=2,
n=0, pc=Middle



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

1082

result=2, oldn=2,
n=0, pc=Done



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

1092

result=2, oldn=2,
n=0, pc=Done



Simulating Recursion with a Stack

int factorial (int n) {
if (n == 0) return 1;
else
return n *

factorial(n – 1);
}

push(Done); push(n); pc=Start;
while (1) {

if (pc==Done) break;
if (pc==Start) {

n=pop();
if (n == 0) {

pc=pop(); push 1; continue;
} else {

push(n); //save old n
push(Middle);push(n-1);pc=Start;
continue;

}
} else { //pc==Middle

result=pop(); oldn=pop();
result=oldn*result;
pc=pop(); push(result);

}
}  // result is on top of stack

1102

result=2, oldn=2,
n=0, pc=Done

This is not something we expect 
you to do in full generality in 
CPSC 221.



Steve’s Fib Example

Computer handles recursion on the stack.
Sometimes you can see a clever shortcut to do it a bit 

more efficiently by only storing what’s really 
needed on the stack:

int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result 111OK, this is cheating a bit (in a good way).
To get down and dirty, see continuations in CPSC 311.

We will prove that
Steve’s program
works next time.



Simulating Recursion with a Stack

• What does a recursive call do?
– Saves current values of local variables and where 

execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

• What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

• We can do on a stack what the computer does for 
us on the system stack…



Simulating Tail Recursion w/o Stack

• What does a recursive call do?
– Saves current values of local variables and where 

execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

• What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

• Why use a stack if you don’t have to do any 
saving or restoring???



Tail Recursion into Iteration

114

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
if (n == 0) return acc;
else 
return fact_acc(n – 1, acc * n);

}



Tail Recursion into Iteration – Step 1

115

int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
if (n == 0) return acc;
else {
//return fact_acc(n – 1, acc * n);
acc = acc * n;
n = n-1;

}
}

Assign parameters
their passed-in values



Tail Recursion into Iteration – Step 1
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int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {

if (n == 0) return acc;
else {
//return fact_acc(n – 1, acc * n);
acc = acc * n;
n = n-1;

}

}

Assign parameters
their passed-in values



Tail Recursion into Iteration – Step 2
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int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
while (1) {
if (n == 0) return acc;
else {
//return fact_acc(n – 1, acc * n);
acc = acc * n;
n = n-1;

}
}
}

Start executing at
beginning of function.



Tail Recursion into Iteration – Step 3
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int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
while (n != 0) {
//if (n == 0) return acc;
//else {
//return fact_acc(n – 1, acc * n);
acc = acc * n;
n = n-1;

//}
}
return acc;
}

Clean up your code
to look nicer.



Tail Recursion into Iteration – Step 3
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int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
while (n != 0) {
acc = acc * n;
n = n-1;

}
return acc;

}

Clean up your code
to look nicer.



Tail Recursion into Iteration
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int fact(int n) {
return fact_acc(n, 1);

}

int fact_acc (int n, int acc) {
while (n != 0) {
acc = acc * n;
n = n-1;

}
return acc;

}

For 221, you should be able to look at a simple tail-recursive
function and convert it to be iterative.



Today’s Learning Goals

• See the similarity between a recursive function 
and a proof by induction.

• Prove recursive functions correct using induction.
• Prove loops correct using loop invariants.
• Appreciate how a proof can help you understand 

complicated code.

• (If we have time, use memoization to make 
recursive functions run faster.)
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Induction and Recursion, 
Twins Separated at Birth?

Base case
Prove for some small 

value(s).

Inductive Step
Otherwise, break a larger 

case down into smaller 
ones that we assume work 
(the Induction Hypothesis).

Base case
Calculate for some small 

value(s).

Recursion
Otherwise, break the problem 

down in terms of itself 
(smaller versions) and 
then call this function to 
solve the smaller versions, 
assuming it will work.
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Old Slide:  Thinking Recursively

DO NOT START WITH CODE. Instead, write 
the story of the problem, in natural language.

Define the problem: What should be done given a 
particular input?

Identify and solve the (usually simple) base case(s).
Start solving a more complex version.
As soon as you break the problem down in terms of 

any simpler version, call the function recursively 
and assume it works.  Do not think about how!

123

This is the secret to thinking recursively!

Your solution will work as long as:

(1) you’ve broken down the problem right

(2) each recursive call really is simpler/smaller, and

(3) you make sure all calls will eventually hit base case(s).



Thinking Inductively

DO NOT START WITH CODE. Instead, write 
the story of the problem, in natural language.

Define the problem: What should be done given a 
particular input?

Identify and solve the (usually simple) base case(s).
Start solving a more complex version.
As soon as you break the problem down in terms of 

any simpler version, use the inductive hypothesis 
and assume it works.  Do not think about how!

124

This is also the secret to doing a proof by induction!

Your solution will work as long as:

(1) you’ve broken down the problem right

(2) inductive assumption on cases that really are simpler/smaller,

(3) you make sure you’ve covered all base case(s).



Induction and Recursion

• They even have the same pitfalls!
• When is it hard to do a proof by induction?

• When is it hard to solve a problem with recursion?



Induction and Recursion

• They even have the same pitfalls!
• When is it hard to do a proof by induction?

– When you can’t figure out how to break the problem 
down

– When you miss a base case
• When is it hard to solve a problem with recursion?

– When you can’t figure out how to break the problem 
down

– When you miss a base case



Proving a Recursive Function 
Correct with Induction is EASY

Just follow your code’s lead and use induction.

Your base case(s)?  Your code’s base case(s).

How do you break down the inductive step?  However 
your code breaks the problem down into smaller 
cases.

What do you assume?  That the recursive calls just work 
(for smaller input sizes as parameters, which better be 
how your recursive code works!).
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Proving a Recursive Function 
Correct with Induction is EASY

// Precondition: n >= 0.
// Postcondition: returns n!
int factorial(int n)
{

if (n == 0)
return 1;

else
return n*factorial(n-1);

}

Prove: factorial(n) = n!
Base case: n = 0.
Our code returns 1 when n = 

0, and 0! = 1 by definition.  


Inductive step: For any
k > 0, our code returns 
k*factorial(k-1).  By IH, 
factorial(k-1) = (k-1)! 
and  k! = k*(k-1)! by 
definition.  QED 128



Perfect Card Shuffling

Problem: You have an array of n playing cards.  
You want to shuffle them so that every order is 
equally likely. You may use a function 
randrange(n), which selects a number [0,n)
uniformly at random.
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Proving A Recursive 
Algorithm Works

Problem: Prove that our algorithm for card shuffling 
gives an equal chance of returning every possible 
shuffle (assuming randrange(n) works as 
advertised).
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Recurrence Relations… 
Already Covered

See METYCSSA #5-7.
Additional Problem: Prove binary search takes O(lg n) time.

// Search array[left..right] for target.  
// Return its index or the index where it should go.
int bSearch(int array[], int target, int left, int right)
{

if (right < left) return left;
int mid = (left + right) / 2;
if (target <= array[mid])

return bSearch(array, target, left, mid-1);
else

return bSearch(array, target, mid+1, right);
}
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Binary Search Problem (Worked)
Note: Let n be # of elements considered in the array (right – left + 1).

int bSearch(int array[], int target, int left, int right)
{

if (right < left) return left;
int mid = (left + right) / 2;
if (target <= array[mid])

return bSearch(array, target, left, mid-1);
else

return bSearch(array, target, mid+1, right);
}

132

O(1), base case
O(1)

O(1)
~T(n/2)

~T(n/2)



Binary Search Problem (Worked)
For n=0: T(0) = 1
For n>0: T(n) = T(n/2) + 1

To guess at the answer, we simplify:

For n=1: T(1) = 1
For n>1: T(n) = T(n/2) + 1
T(n) = (T(n/4) + 1) + 1
T(n) = T(n/4) + 2
T(n) = T(n/8) + 3
T(n) = T(n/16) + 4
T(n) = T(n/(2i)) + i

133

Sub  in T(n/2) = T(n/4)+1

Change n/2 to n/2.
Change base case to T(1) 
(We’ll never reach 0 by dividing by 2!)

Sub  in T(n/4) = T(n/8)+1
Sub  in T(n/8) = T(n/16)+1



Binary Search Problem (Worked)

To guess at the answer, we simplify:

For n=1: T(1) = 1
For n>1: T(n) = T(n/2) + 1
For n>1: T(n) = T(n/(2i)) + i

To reach the base case, let n/2i = 1
n = 2i means i = lg n

T(n) = T(n/2lg n) + lg n = T(1) + lg n = lg n + 1
T(n) ∈ O(lg n)

134

Why did that work out so well?



Binary Search Problem (Worked)

To prove the answer, we use induction:

For n=0: T(0) = 1
For n>0: T(n) = T(n/2) + 1
T(1) = T(0) + 1 = 2
T(2) = T(3) = T(1) + 1 = 3.
Prove T(n) ∈ O(lg n)

Let c = 3, n0 = 2.
Base cases: T(2) = 3 = 3 lg 2 
Base cases: T(3) = 3 ≤ 3 lg 3 

135



Binary Search Problem (Worked)

To prove the answer, we use induction:

For n=0: T(0) = 1
For n>0: T(n) = T(n/2) + 1
T(1) = T(0) + 1 = 2
T(2) = T(3) = T(1) + 1 = 3.
Prove T(n) ∈ O(lg n)

Let c = 3, n0 = 2.
Base cases: T(2) = 3 = 3 lg 2 
Base cases: T(3) = 3 ≤ 3 lg 3 
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Alan’s Aside:  Note that
Steve used 2 and 3 as base
cases.  Why?  Because proof
doesn’t work at T(1).



Binary Search Problem (Worked)
T(0) = 1, T(1) = 2, T(2) = 3, T(3) = 3
For n>3: T(n) = T(n/2) + 1
c = 3, n0 = 2

Base cases: prev slides 
Induction hyp: for all 2 ≤ k < n, T(k) ≤ 3 lg k
Inductive step, n > 3, in two cases (odd & even)
n is odd: T(n) = T((n-1)/2) + 1

≤ 3 lg((n-1)/2) + 1
= 3 lg(n-1) – 3 lg 2 + 1
= 3 lg(n-1) – 3 + 1
≤ 3 lg n 

137

n ≥ 5, so 
(n-1)/2 ≥ 2,
so IH applies



Binary Search Problem (Worked)
T(0) = 1, T(1) = 2, T(2) = 3, T(3) = 3
For n>3: T(n) = T(n/2) + 1
c = 3, n0 = 2

Base cases: prev slides 
Induction hyp: for all 2 ≤ k < n, T(k) ≤ 3 lg k
Inductive step, n > 3, in two cases (odd & even)
n is even: T(n) = T(n/2) + 1

≤ 3 lg(n/2) + 1
= 3 lg n – 3 lg 2 + 1
= 3 lg n – 3 + 1
≤ 3 lg n 

QED!
138

n ≥ 4, so 
n/2 ≥ 2,
so IH applies



Proof of Iterative Programs?

• We’ve seen that iteration is just a special case of 
recursion.

• Therefore, we should be able to prove that loops 
work, using the same general technique.

• Because loops are a special case (and are easier to 
analyze, so the theory was developed earlier), 
there is different terminology, but it’s still 
induction.



Loop Invariants

We do this by stating and proving “invariants”, properties that 
are always true (don’t vary) at particular points in the 
program.

One way of thinking of a loop is that at the start of each 
iteration, the invariant holds, but then the loop breaks it as 
it computes, and then spends the rest of the iteration fixing 
it up.

Compare to the simplest induction you learned, where you 
assume the case for n and prove for n+1.  Now, we assume 
a statement is true before each loop iteration, and prove it 
is still true after the loop iteration.

140



Caution!
• The description of loop invariants in the Epp textbook is 

slightly wrong and needlessly confusing:
– The invariant doesn’t need to be a predicate whose domain is 

only an integer.  Any predicate will work.
– It confuses the variables in the predicate with the number of 

times the loop executes.
– It mixes up (1) proving that a predicate is a loop invariant with 

(2) using the loop invariant to show that a program works.
– Termination should be handled separately from the reasoning 

about loop invariants.
• If you want a written reference, the Wikipedia page for 

“Loop Invariant” is correct.
141



Invariants in Daily Life

Suppose you have a bunch of house guests who are all 
well-behaved,  so they always put things that they use 
back the way they found them.
• When you leave the house, you have put everything 

just the way you like (toilet seat position, books on 
the table, milk in the fridge, etc.)

• Where are they after your guests leave?
• Does it matter how many guests were there, or how 

often they used your stuff?
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More Interesting Examples

• When the police search for a fugitive, they:
1. establish a perimeter that contains the suspect,
2. maintain the invariant  “The suspect is within the search 

perimeter.” as they gradually shrink the perimeter.
• The same approach is used for fighting wildfires:

1. establish a perimeter that contains all burning areas,
2. maintain the invariant  “All burning areas are within the 

perimeter.” as they gradually shrink the perimeter.
The approach works regardless of how long it takes.
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More Interesting Examples

• When the police search for a fugitive, they:
1. establish a perimeter that contains the suspect,
2. maintain the invariant  “The suspect is within the search 

perimeter.” as they gradually shrink the perimeter.
• The same approach is used for fighting wildfires:

1. establish a perimeter that contains all burning areas,
2. maintain the invariant  “All burning areas are within the 

perimeter.” as they gradually shrink the perimeter.
The approach works regardless of how long it takes.

Do you see the induction happening I these examples? 144



int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Convert for-loops to while-loops.
– Easiest to reason about while-loops.

Loop Invariants:  The Easy Way



int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Write your loop invariant to be true at the exact same 
time as you check the loop condition.
– In a while-loop, this is at the top/bottom of the loop body.
– No need to worry about the i++ in a for-loop

Loop Invariants:  The Easy Way



int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Base Case:  prove that your loop invariant holds 
when you first arrive at the loop.

Loop Invariants:  The Easy Way



int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Induction:
– Assume the loop invariant holds at top of loop.
– You also get to assume the loop condition is true.  (Why?)
– Prove that loop invariant holds at bottom of loop.

Loop Invariants:  The Easy Way



int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Finishing the proof:
– Upon exiting the loop, you can still assume loop invariant.
– You also get to assume the loop condition is false.
– Use those fact to prove whatever you need next.

Loop Invariants:  The Easy Way



int i=1; // etc. initialization stuff
while (condition) {

loop body;
}

• Termination:
– You may need to make a completely separate argument 

that the loop will eventually terminate.
– Usually, this is by showing that some progress is always 

made each time you go through the loop.

Loop Invariants:  The Easy Way



Insertion Sort
for (int i = 1; i < length; i++)
{
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
}

Rewrite as while loop!
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Insertion Sort
int i = 1;
while (i < length)
{
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Now, we need to come up with a good invariant.
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Insertion Sort
int i = 1;
while (i < length)
// Invariant:  here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

So, what’s the base case?
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Insertion Sort
int i = 1;
while (i < length)
// Invariant:  here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Base Case:  When the code first reaches the loop 
invariant i=1, so array[0..0] is trivially sorted. 154



Insertion Sort
int i = 1;
while (i < length)
// Invariant:  here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Proof of inductive case is just like before.
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Insertion Sort
int i = 1;
while (i < length)
// Invariant:  here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Inductive Hypothesis:  We assume array[0..i-1] is 
sorted at top of loop, and i<length. 156



Insertion Sort
int i = 1;
while (i < length)
// Invariant:  here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Inductive Step:  bSearch finds correct index to put 
array[i], so array[0..i] is sorted, then i++ happens…157



Insertion Sort
int i = 1;
while (i < length)
// Invariant:  here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

Inductive Step:  … so loop invariant holds again at 
the bottom of the loop.  QED 158



Insertion Sort
int i = 1;
while (i < length)
// Invariant:  here (and at loop bottom), the elements in
// array[0..i-1] are in sorted order.

{
// since i will go up by 1, put the last element in order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
i++;

}

When loop exits, i==length.  Invariant says array[0..i-1] 
is sorted, so array[0..length-1] is sorted. 159



BTW, this “Easy Way” is at least as formal, precise, 
and correct as any method where you see lots of math 
flying around (like in the Epp textbook).

It’s also the basis for tools like Microsoft’s Static 
Driver Verifier.

It’s also how Bob Floyd and Tony Hoare originally 
formalized this.

Loop Invariants:  The Easy Way



Aside:  Formality vs. Sloppiness

• In real life, people are often a bit sloppy, just to make 
things easier.  That’s OK if you know what you’re doing.  
When in doubt, fall back on the formal approach!
– If your very comfortable with for loops, you don’t have to rewrite 

as a while loop.
– Getting all the details can be tricky, but the core idea of your loop 

invariant is a GREAT comment to put in your code.



Aside:  Formality vs. Looking Formal

• If you ever have to deal with a professor who thinks that a loop 
invariant needs to have an induction variable (which is 
incorrect, but not everyone knows this), just follow these steps:
– Say “Let k (or i or some other convenient mathy variable name) 

represent the number of times the loop body executes.  The proof is by 
mathematical induction on k.” at the beginning of your proof.

– At the beginning of your base case, say “In the base case, k=0.  When 
the execution first reaches the top of the loop body…” and then fill in 
the same base case you would have said doing things the easy way.

– For your induction step, say “We assume the loop invariant holds after 
k executions of the loop body” at the beginning of the induction step.  
Prove that it holds at the end of the loop body, and then say, “So we 
see that the loop invariant still holds after k+1 executions of the loop 
body.  This concludes the proof by mathematical induction.”



Steve’s Practice: 
Prove the Inner Loop Correct

for (int i = 1; i < length; i++)
{
// i went up by 1.  The last element may be out of order!
int val = array[i];
int newIndex = bSearch(array, val, 0, i);
// What’s the invariant?  Something like 
// “array[0..j-1] + array[j+1..i] = the old array[0..i-1]”
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

array[newIndex] = val;
}

Prove by induction that the inner loop operates correctly.  
(This may feel unrealistically easy!)

Finish the proof!  (As we did for the outer loop, talk about 
what the invariant means when the loop ends.)
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Steve’s Practice (Solution): 
Prove the Inner Loop Correct
// What’s the invariant?  Something like 
// “array[0..j-1] + array[j+1..i] = the old array[0..i-1]”
for (int j = i; j > newIndex; j--)
array[j] = array[j-1];

Base Case:  At the start of the first iteration, j==i, so 
array[0..j-1] is exactly array the old array[0..i-1].

Inductive Step:  Assume the invariant holds at the top of the 
loop.  The invariant doesn’t care about array[j], so we can 
overwrite it with array[j-1].  But after j--, the invariant 
holds once again for the new j.

When the loop terminates, j==newIndex.  Therefore, 
array[0..newIndex-1] + array[newIndex+1..i] equals the 
old array[0..i-1].

164



Steve’s Fib Example

Computer handles recursion on the stack.
Sometimes you can see a clever shortcut to do it a bit 

more efficiently by only storing what’s really 
needed on the stack:

int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result 165OK, this is cheating a bit (in a good way).
To get down and dirty, see continuations in CPSC 311.

We will prove that
Steve’s program
works next time.



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

166

Where does the loop invariant go?



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

167

Where does the loop invariant go?

What should the 
invariant be?



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

168

This is the step that requires insight…
Hmm… I’m replacing n by n-1 and n-2, or I’m increasing result
when n<=2 (when fib(n)=1).

What should the 
invariant be?



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

169

This is the step that requires insight…
So, it’s sort of like stuff on the stack, plus result doesn’t change...
Aha!  Sum of fib(i) for all i on stack, plus result equals fib(n)

What should the 
invariant be?



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

170

OK, so now, what’s the base case? 

Sum of fib(i) for all i on stack, 
plus result equals fib(n)



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

171

OK, so now, what’s the base case?
Initially, n is only item on stack, and result=0.  fib(n)+0=fib(n). 

Sum of fib(i) for all i on stack, 
plus result equals fib(n)



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

172

OK, so now, what’s the base case?
Initially, n is only item on stack, and result=0.  fib(n)+0=fib(n). 

Sum of fib(i) for all i on stack, 
plus result equals fib(n)

Note that for a loop invariant proof,
the base case is NOT something like n=0.
The (implicit) induction variable is the
number of times through the loop!



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

173

And the inductive case?

Sum of fib(i) for all i on stack, 
plus result equals fib(n)



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

174

And the inductive case?  Assume inductive hypothesis.
We pop a number n off the stack.  If n <=2, then fib(n)=1, so by 
increasing result by 1, we maintain inductive hypothesis…

Sum of fib(i) for all i on stack, 
plus result equals fib(n)



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

175

And the inductive case?  Assume inductive hypothesis.
If n>2, we push n-1 and n-2.  But since fib(n)=fib(n-1)+fib(n-2) 
(by definition), the sum of fib(i) for all i on the stack is 
unchanged.

Sum of fib(i) for all i on stack, 
plus result equals fib(n)



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

176

And the inductive case?  Assume inductive hypothesis.
If n>2, we push n-1 and n-2.  But since fib(n)=fib(n-1)+fib(n-2) 
(by definition), the sum of fib(i) for all i on the stack is 
unchanged.

Sum of fib(i) for all i on stack, 
plus result equals fib(n)

At this point, the “loop invariant” proof
itself is done!!!  (You have proven by induction
that the loop invariant always holds.)
The next step is to use the loop invariant to prove
that the program works.



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result
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Sum of fib(i) for all i on stack, 
plus result equals fib(n)

What can we conclude at loop 
exit?



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

178

We still have loop invariant (since it’s invariant), and we have the 
exit condition: isEmpty.

Sum of fib(i) for all i on stack, 
plus result equals fib(n)

Loop invariant holds, and
(not (not isEmpty))



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

179

Since stack is empty, sum of fib of stuff on stack is 0.  So, 
0+result=fib(n).  Therefore, result=fib(n).  QED

Sum of fib(i) for all i on stack, 
plus result equals fib(n)

Loop invariant holds, and
(not (not isEmpty))



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

180

The loop invariant helps us understand if/why the code works!
(BTW, loop invariants are great things to put in comments.)

Sum of fib(i) for all i on stack, 
plus result equals fib(n)

Loop invariant holds, and
(not (not isEmpty))



Steve’s Fib Example
int fib(int n)
result = 0
push(n)
while not isEmpty

n = pop
if (n <= 2) result++;
else push(n – 1); push(n – 2)

return result

181

Termination for this example takes some work, too.
The key is that if you think of what’s on the stack as a string of 
numbers, the stack contents always get earlier in “alphabetical 
order”.  E.g., [5] > [4,3] > [4,2,1] > [4,2] > [4] > [3,2] > [3] >…
This way of ordering is called “lexicographical order”.



Topic Change:  Memoization

• This is an easy-to-program trick to make certain 
kinds of recursive functions run a lot faster…



Accidentally Making Lots of 
Recursive Calls; Recall...

int Fib(n)
if (n == 1 or n == 2) return 1
else return Fib(n - 1) + Fib(n - 2)

Finish the recursion tree for Fib(5)…
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Avoiding Duplicate Calls

We’re making an exponential number of calls!  This is bad.
Plus, many calls are duplicates… That means wasted work!
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Memoization

• Keep a table of all calls you’ve computed already.
– Initially, this is empty.
– This trick only works if the number of possible calls is 

much smaller than the total number of times you make 
recursive calls.

• At start of function, check if you’ve solved this 
case before.  If so, return old solution.

• After computing a solution, store it in table before 
returning.  (Leave a “memo” to yourself.)



Fixing Fib with Recursion and 
“Memoizing”

int[] fib_solns = new int[large_enough]; // init to 0
fib_solns[1] = 1;
fib_solns[2] = 1;
int fib_memo(int n)
{

// If we don’t know the answer…
if (fib_solns[n] == 0)
fib_solns[n] = fib_memo(n-1) + 

fib_memo(n-2);
return fib_solns[n];

}
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Aside:  “Dynamic Programming”

• It turns out that you can often build up the table of 
solutions iteratively, from the base cases up, instead of 
using recursion.

• For historical reasons, this is called “dynamic 
programming”.  You’ll see this a lot in CPSC 320.

• The advantage of dynamic programming is that once you 
see how the table is built up, you can often use much less 
space, keeping only the parts that matter.

• The advantage of memoization, though, is that it’s very 
easy to program.



Fixing Fib with “Dynamic 
Programming”

int[] fib_solns = new int[large_enough]; // init to 0
fib_solns[1] = 1;
fib_solns[2] = 1;

int fib(int n) {
for (int i=3; i<=n; i++) {
fib_solns[i] = fib_solns[i-1] +

fib_solns[i-2];
}
return fib_solns[n];

}
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Fixing Fib with “Dynamic 
Programming” – Optimizing Space

int[] fib_solns = new int[2]; // init to 0
fib_solns[0] = 1;
fib_solns[1] = 1;

int fib(int n) {
for (int i=3; i<=n; i++) {
old_fib = fib_solns[0];
fib_solns[0] = fib_solns[1];
fib_solns[1] = fib_solns[0] +

old_fib;
}
return fib_solns[1];

}
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