
CS221: Algorithms and

Data Structures

Priority Queues and Heaps

Alan J. Hu

(Borrowing slides from Steve Wolfman)

1

Learning Goals

After this unit, you should be able to:

• Provide examples of appropriate applications for

priority queues and heaps

• Manipulate data in heaps

• Describe and apply the Heapify algorithm, and

analyze its complexity

2

Today’s Outline

• Trees, Briefly

• Priority Queue ADT

• Heaps

– Implementing Priority Queue ADT

– Focus on Create: Heapify

– Brief introduction to d-Heaps

3

Tree Terminology
A

E

B

D F

C

G

IH

LJ MK N

root:

leaf:

child:

parent:

sibling:

ancestor:

descendent:

subtree:

4

Tree Terminology Reference
A

E

B

D F

C

G

IH

LJ MK N

root: the single node with no parent

leaf: a node with no children

child: a node pointed to by me

parent: the node that points to me

sibling: another child of my parent

ancestor: my parent or my parent’s ancestor

descendent: my child or my child’s descendent

subtree: a node and its descendents

We sometimes use degenerate versions

of these definitions that allow NULL as

the empty tree. (This can be very handy for recursive base cases!)5

More Tree Terminology
A

E

B

D F

C

G

IH

LJ MK N

depth: # of edges along path from root to node

depth of H?

6

More Tree Terminology
A

E

B

D F

C

G

IH

LJ MK N

height: # of edges along longest path

from node to leaf or, for whole

tree, from root to leaf

height of tree?

7

More Tree Terminology
A

E

B

D F

C

G

IH

LJ MK N

degree: # of children of a node

degree of B?

8

More Tree Terminology
A

E

B

D F

C

G

IH

LJ MK N

branching factor: maximum degree of

any node in the tree

2 for binary trees,

our usual concern;

5 for this weird tree

9

One More Tree Terminology

Slide

JIH

GFED

CB

A

binary: branching factor of 2 (each child has at most 2 children)

n-ary: branching factor of n

complete: “packed” binary tree;

as many nodes as

possible for its height

nearly complete: complete plus some nodes on the left at the bottom10

Trees and (Structural) Recursion

A tree is either:

– the empty tree

– a root node and an ordered list of subtrees

Trees are a recursively defined structure, so it makes

sense to operate on them recursively.

11

Today’s Outline

• Trees, Briefly

• Priority Queue ADT

• Heaps

– Implementing Priority Queue ADT

– Focus on Create: Heapify

– Brief introduction to d-Heaps

12

Back to Queues

• Some applications

– ordering CPU jobs

– simulating events

– picking the next search site

• Problems?

– short jobs should go first

– earliest (simulated time) events should go first

– most promising sites should be searched first

13

Priority Queue ADT

• Priority Queue operations

– create

– destroy

– insert

– deleteMin

– isEmpty

• Priority Queue property: for two elements in the

queue, x and y, if x has a lower priority value than

y, x will be deleted before y

F(7) E(5)

D(100) A(4)

B(6)

insert deleteMin
G(9) C(3)

14

Applications of the Priority Q

• Hold jobs for a printer in order of length

• Store packets on network routers in order of

urgency

• Simulate events

• Select symbols for compression

• Sort numbers

• Anything greedy: an algorithm that makes the

“locally best choice” at each step

15

Naïve Priority Q Data Structures

• Unsorted list:

– insert:

– deleteMin:

• Sorted list:

– insert:

– deleteMin:

16

a. O(lg n)

b. O(n)

c. O(n lg n)

d. O(n2)

e. Something else

Today’s Outline

• Trees, Briefly

• Priority Queue ADT

• Heaps

– Implementing Priority Queue ADT

– Focus on Create: Heapify

– Brief introduction to d-Heaps

17

Binary Heap Priority Q Data

Structure

201412911

81067

54

2

• Heap-order property

– parent’s key is less than or

equal to children’s keys

– result: minimum is always

at the top

• Structure property

– “nearly complete tree”

– result: depth is always

O(log n); next open location

always known

WARNING: this has NO SIMILARITY to the “heap” you hear about

when people say “objects you create with new go on the heap”.

Look! Invariants!

18

201412911

81067

54

2

2 4 5 7 6 10 8 11 9 12 14 20

0 1 2 3 4 5 6 7 8 9 10 11

0

1 2

3 4 5 6

7 8

9 10 11

Nifty Storage Trick

• Calculations:

– child:

– parent:

– root:

– next free:

19

201412911

81067

54

2

2 4 5 7 6 10 8 11 9 12 14 20

1 2 3 4 5 6 7 8 9 10 11 12

1

2 3

4 5 6 7

8 9

10 11 12

(Aside: Steve numbers from 1.)

• Calculations:

– child:

– parent:

– root:

– next free:

0

Steve like to just skip using entry 0 in the array, so the root is at index 1.

For a binary heap, this makes the calculations slightly shorter.
20

Insert

201412911

81067

54

2

201412911

81067

54

2

pqueue.insert(3)

3

Invariant violated! What will we do? 21

Percolate Up

201412911

81067

54

2

3 201412911

8367

54

2

10

201412911

8567

34

2

10 201412911

8567

34

2

10 22

Insert Code

void insert(Object o) {

assert(!isFull());

newPos =

percolateUp(size,o);

size++;

Heap[newPos] = o;

}

int percolateUp(int hole,

Object val) {

while (hole > 0 &&

val < Heap[(hole-1)/2])

Heap[hole] = Heap[(hole-1)/2];

hole = (hole-1)/2;

}

return hole;

}

runtime:

23

DeleteMin

201412911

81067

54

?

2

201412911

81067

54

2

pqueue.deleteMin()

Invariants violated! DOOOM!!! 24

Percolate Down

201412911

81067

54

?

201412911

81067

5?

4

201412911

810?7

56

4

201420911

810127

56

4

25

Finally…

1420911

810127

56

4

26

DeleteMin Code

Object deleteMin() {

assert(!isEmpty());

returnVal = Heap[0];

size--;

newPos =

percolateDown(0,

Heap[size]);

Heap[newPos] =

Heap[size];

return returnVal;

}

int percolateDown(int hole,

Object val) {

while (2*hole+1 < size) {

left = 2*hole + 1;

right = left + 1;

if (right < size &&

Heap[right] < Heap[left])

target = right;

else

target = left;

if (Heap[target] < val) {

Heap[hole] = Heap[target];

hole = target;

}

else

break;

}

return hole;

}

runtime:

27

Today’s Outline

• Trees, Briefly

• Priority Queue ADT

• Heaps

– Implementing Priority Queue ADT

– Focus on Create: Heapify

– Brief introduction to d-Heaps

28

Closer Look at Creating Heaps

To create a heap given a list of items:

Create an empty heap.

For each item: insert into heap.

Time complexity?

a. O(lg n)

b. O(n)

c. O(n lg n)

d. O(n2)

e. None of these 111210

35

39, 4, 8, 1, 7, 2

29

A Better BuildHeap
Floyd’s Method. Thank you, Floyd.

5 11 3 10 6 9 4 8 1 7 212

pretend it’s a heap and fix the heap-order property!

27184

96103

115

12

Invariant violated!

Where can the order

invariant be violated

in general?

a. Anywhere

b. Non-leaves

c. Non-roots
30

Alan’s Aside:

• I don’t really like the way Steve explains this.

• Heaps are recursive (mostly, except for structure):

– A single node is a heap.

– If parent value less than its child(ren), and child(ren)
are heaps (except for “nearly complete” property).

• Think of enforcing the heap invariant from the
bottom up!

– Base Case: All nodes with no children are heaps
already.

– Inductive Case: My children are heaps. Percolate my
value down, and that makes me a heap, too.

Build(this)Heap

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

32

Finally…

11710812

9654

23

1

runtime:

33

Build(any)Heap

This is as many violations as we can get.

How do we fix them? Let’s play colouring games!
34

Build(any)Heap

Alan’s Aside: I like to think of this instead as “charging”

edges in the tree for the cost of the moves. We can work

out a scheme where each edge pays only once.

(A 1-1 correspondence!) 35

Build(any)Heap

Alan’s Aside: The proof that this always works is

inductive. The inductive step is that both of my subtrees

have an uncharged path (rightmost) to the leaves. I charge

my cost to my left child, and my right child provides the

rightmost, uncharged path that I offer to my parent.
36

Alan’s Aside

• Alternatively, we can do this with algebra.

• Consider a complete heap:

– As we do percolate-down on bottom row, the cost is 0, each.

There are roughly n/2 nodes on bottom row.

– On next row up, the cost is 1, each. There are roughly n/4

nodes on second row.

– On the kth row up, the cost is k-1 times n/(2^k) nodes on that

row.

– Therefore, run time is n
inn

i
n

i
i

i
i

i

n

i
i

 00
1

log

1 2222
)1(

Alan’s Aside

• The last sum is tricky…

• Think of the 2s as 1+1; the 3s, as 1+1+1; etc.

• Now, add up a “layer” of 1s for the whole tree.

• Then, add up a layer of 1s for the part of the tree where

the cost was 2 or more.

• Then, add up a layer of 1s for the part of the tree where

the cost was 3 or more.

• Etc.

Alan’s Aside

321

321

3210
0

2

1

2

1

2

1

2

111

2

11

2

1

2

3

2

2

2

1

2

0

2

i
i

i
i

i
i

i
i

i

Alan’s Aside

2
2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1
1

1 1
1

1

3210

j
j

j i
ij

j ji
i

i
i

i
i

i
i

i
i

i

Steve’s Version of Alan’s Aside

 1
2

1

2

1
1

22

1

2

1

2

1

22

1

2

1

2

1

2

1

2

1

22

1

2

1

22

1

22

1

11

12
1

210

S
i

i

ii

iii
S

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Today’s Outline

• Trees, Briefly

• Priority Queue ADT

• Heaps

– Implementing Priority Queue ADT

– Focus on Create: Heapify

– Brief introduction to d-Heaps

42

Thinking about Binary Heaps

• Observations

– finding a child/parent index is a multiply/divide by two

– operations jump widely through the heap

– deleteMins look at all (two) children of some nodes

– inserts only care about parents of some nodes

– inserts are at least as common as deleteMins

• Realities

– division and multiplication by powers of two are fast

– looking at one new piece of data sucks in a cache line

– with huge data sets, disk accesses dominate 43

4

9654

23

1

8 1012

7

11

Solution: d-Heaps

• Nodes have (up to) d children

• Still representable by array

• Good choices for d:

– optimize (non-asymptotic)

performance based on

ratio of inserts/removes

– make d a power of two

for efficiency

– fit one set of children in a cache line

– fit one set of children on a memory

page/disk block

3 7 2 8 5 12 11 10 6 91

d-heap mnemonic:

d is for degree!44

Calculations in terms of d:

– child:

– parent:

– root:

– next free:

4

9654

23

1

8 1012

7

11

d-Heap calculations

3 7 2 8 5 12 11 10 6 91

d-heap mnemonic:

d is for degree!45

Alan’s Aside: Easier to work pattern if

you count from zero!

Calculations in terms of d:

– child: i*d+1 through i*d+d

– parent: floor((i-1)/d)

– root: 0

– next free: size

4

9654

23

1

8 1012

7

11

d-Heap calculations

3 7 2 8 5 12 11 10 6 91

d-heap mnemonic:

d is for degree!46

Alan’s Aside: Easier to work pattern if

you count from zero!

4

9654

23

1

8 1012

7

11

(Steve’s d-Heap calculations)

3 7 2 8 5 12 11 10 6 91

d-heap mnemonic:

d is for degree!

Calculations in terms of d:

– child:

– parent:

– root:

– next free:

47

4

9654

23

1

8 1012

7

11

(Steve’s d-Heap calculations)

3 7 2 8 5 12 11 10 6 91

d-heap mnemonic:

d is for degree!

Calculations in terms of d:

– child: (i-1)*d+2 through i*d+1

– parent: floor((i-2)/d) + 1

– root: 1

– next free: size+1

48

Rest of Today’s Learning Goals

• Get comfortable with C++ pointers, understand

the * and & operators.

• Draw diagrams to help understand code that

manipulates pointers.

49

C++ Reference Parameters

 & in a formal parameter makes the parameter

another name for the argument that was

passed in!

 It’s not a copy of the value of the

argument, the way normal parameter

passing works.

C++ Reference Parameters

void swap(int x, int y) {

int t = x;

x = y;

y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

void swap(int &x, int &y) {

int t = x;

x = y;

y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

C++ Reference Parameters

void swap(int x, int y) {

int t = x;

x = y;

y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

void swap(int &x, int &y) {

int t = x;

x = y;

y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

Old-School C (and C++)

void swap(int *x, int *y) {

int *t = x;

x = y;

y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

void swap(int *x, int *y) {

int t = *x;

*x = *y;

*y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

Old-School C (and C++)

void swap(int *x, int *y) {

int *t = x;

x = y;

y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

void swap(int *x, int *y) {

int t = *x;

*x = *y;

*y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

Old-School C (and C++)

void swap(int *x, int *y) {

int t = *x;

*x = *y;

*y = t;

}

…

int a=0; int b=1;

swap(&a,&b);

cout << a << “, “ << b;

void swap(int *x, int *y) {

int t = *x;

*x = *y;

*y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

Old-School C (and C++)

void swap(int *x, int *y) {

int t = *x;

*x = *y;

*y = t;

}

…

int a=0; int b=1;

swap(&a,&b);

cout << a << “, “ << b;

void swap(int *x, int *y) {

int t = *x;

*x = *y;

*y = t;

}

…

int a=0; int b=1;

swap(a,b);

cout << a << “, “ << b;

