CS221: Algorithms and
Data Structures

Priority Queues and Heaps

Alan J. HuU
(Borrowing slides from Steve Wolfman)

Learning Goals

After this unit, you should be able to:

» Provide examples of appropriate applications for
priority queues and heaps

« Manipulate data in heaps

« Describe and apply the Heapify algorithm, and
analyze its complexity

Today’s Outline

* Trees, Briefly
 Priority Queue ADT
* Heaps
— Implementing Priority Queue ADT

— Focus on Create: Heapify
— Brief introduction to d-Heaps

Tree Terminology

root:

leaf:

child:
parent:
sibling:
ancestor:
descendent:
subtree:

Tree Terminology Reference

root: the single node with no parent
leaf: a node with no children

child: a node pointed to by me
parent: the node that points to me
sibling: another child of my parent
ancestor: my parent or my parent’s ancestor
descendent: my child or my child’s descendent
subtree: a node and its descendents

y
We sometimes use degenerate versions @@@@@

of these definitions that allow NULL as
the empty tree. (This can be very handy for recursive base cases!)

More Tree Terminology

depth: # of edges along path from root to node
depth of H?

More Tree Terminology

height: # of edges along longest path
from node to leaf or, for whole
tree, from root to leaf

height of tree?

More Tree Terminology

degree: # of children of a node
degree of B?

More Tree Terminology

branching factor: maximum degree of
any node in the tree

2 for binary trees,
our usual concern:;
5 for this weird tree

One More Tree Terminology
Slide

binary: branching factor of 2 (each child has at most 2 children)

A

n-ary: branching factor of n
(B) ©®

complete: “packed” binary tree; ; : F)

as many nodes as
possible for its height @ @ @

nearly complete: complete plus some nodes on the left at the Bbttom

Trees and (Structural) Recursion

A tree IS either:
— the empty tree
— a root node and an ordered list of subtrees

Trees are a recursively defined structure, so it makes
sense to operate on them recursively.

11

Today’s Outline

* Trees, Briefly
 Priority Queue ADT
* Heaps
— Implementing Priority Queue ADT

— Focus on Create: Heapify
— Brief introduction to d-Heaps

12

Back to Queues

« Some applications
— ordering CPU jobs
— simulating events
— picking the next search site

* Problems?
— short jobs should go first

— earliest (simulated time) events should go first
— most promising sites should be searched first

13

omber AP st

Rel™ Priority Queue ADT

* Priority Queue operations
— Create

| F(7) E(5) |

— destro

_ y G(9) insert | D(lOO) A(4) deleteMin_ C(3)
— Insert B(6)

— deleteMin

— ISEmpty

 Priority Queue property: for two elements in the
queue, x and y, If x has a lower priority value than

y, X Will be deleted before y

14

Applications of the Priority Q

Hold jobs for a printer in order of length

Store packets on network routers in order of
urgency

Simulate events
Select symbols for compression
Sort numbers

Anything greedy: an algorithm that makes the
“locally best choice” at each step

15

Naive Priority Q Data Structures

e Unsorted list:

— Insert:

— deleteMin:

« Sorted list:
— Insert:

— deleteMin:

® o0 o

O(lg n)

O(n)

O(nlg n)
O(n?)
Something else

16

Today’s Outline

* Trees, Briefly
* Priority Queue ADT
* Heaps
— Implementing Priority Queue ADT

— Focus on Create: Heapify
— Brief introduction to d-Heaps

17

Binary Heap Priority Q Data

Structure
» Heap-order property

Look! Invariants!
— parent’s key is less than 0/
equal to children’s keys
— result: minimum is always
at the top

« Structure property

— “nearly complete tree”

— result: depth is always
O(log n); next open location

always known @ @ @ @ @

WARNING: this has NO SIMILARITY to the “heap” you hear about

when people say “objects you create with new go on the heap”. *°

Nifty Storage Trick

e Calculations:
— child:

— parent:
— root:

— next free:

(Aside: Steve numbers from 1.)

e Calculations:
— child:

— parent:

— root:

— next free:

o 1 2 3 4 5 6 7 8 9 10 11 12
2141576108 |11 9 |12|14|20

Steve like to just skip using entry O in the array, so the root is at ingex 1.
For a binary heap, this makes the calculations slightly shorter.

Insert

pqueue.insert (3)

(4) (5] (4) (5,

q

D © W 6 D © W 6
VOOV DIOIRITIDIO,

Invariant violated! What will we do? 21

Percolate Up

void insert (Object o) {
assert('isFull());

newPos =

percolateUp (size,0);

size++;
Heap [newPos]

runtime:

Oy

Insert Code

int percolateUp (int hole,
Object wval) {
while (hole > 0 &&
val < Heap][(hole-1)/2])
Heap[hole] = Heap|[(hole-1)/2];
hole = (hole-1)/2;
}

return hole;

23

DeleteMiIn

pqueue.deleteMin ()

Invariants violated! DOOOM!!! 24

Percolate Down

DeleteMin Code

Object deleteMin() {
assert (!'isEmpty()) ;
returnvVal = Heap|[O0];
size--;
newPos =

percolateDown (0,
Heap[size]) ;
Heap[newPos] =
Heap|[size];
return returnvVal;

runtime:

int percolateDown (int hole,
Object wval) {
while (2*hole+l < size) {
left = 2*hole + 1;
right = left + 1;
if (right < size &&
Heap[right] < Heap[left])
target = right;
else
target = left;

if (Heap[target] < wval) {
Heap[hole] = Heap|[target];
hole = target;

}

else
break;

}

return hole; 27

Today’s Outline

* Trees, Briefly
 Priority Queue ADT
* Heaps
— Implementing Priority Queue ADT

— Focus on Create: Heapify
— Brief introduction to d-Heaps

28

Closer Look at Creating Heaps

To create a heap given a list of items:
Create an empty heap.
For each item: insert into heap.

Time complexity? f\

a. O(lg n)

b. O(n)

c. O(nlgn)

d. O(n?)

e. None of these

A Better BuildHeap

Floyd’s Method. Thank you, Floyd.

12151113 (10,6 |94 |8 |1 |72

pretend it’s a heap and fix the heap-order property!

(12
Where can the order 6 @
Invariant be violated

In general? (3) 10 (6) 9)

a. Anywhere

b. Non-leaves 9 @ 0 @ g

c. Non-roots 30

Invariant violated!

Alan’s Aside:

* I don’treally like the way Steve explains this.

« Heaps are recursive (mostly, except for structure):
— A single node is a heap.
— If parent value less than its child(ren), and child(ren)
are heaps (except for “nearly complete” property).

 Think of enforcing the heap invariant from the
bottom up!

— Base Case: All nodes with no children are heaps
already.

— Inductive Case: My children are heaps. Percolate my
value down, and that makes me a heap, too.

runtime:

Finally...

33

Build(any)Heap

O00O0O0

This Is as many violations as we can get.
How do we fix them? Let’s play colouring games!

34

Build(any)Heap

O00O0O0

Alan’s Aside: I like to think of this instead as “charging”
edges In the tree for the cost of the moves. We can work
out a scheme where each edge pays only once.

(A 1-1 correspondence!) 35

Build(any)Heap

O00O0O0

Alan’s Aside: The proof that this always works 1s
Inductive. The inductive step is that both of my subtrees
have an uncharged path (rightmost) to the leaves. | charge
my cost to my left child, and my right child provides the
rightmost, uncharged path that | offer to my parent. %

Alan’s Aside

 Alternatively, we can do this with algebra.

» Consider a complete heap:

— As we do percolate-down on bottom row, the cost is 0, each.
There are roughly n/2 nodes on bottom row.

— On next row up, the cost is 1, each. There are roughly n/4
nodes on second row.

— On the kth row up, the cost is k-1 times n/(2"*k) nodes on that
row. logn n

. < N |
— Therefore, run time is 1 -1 =—) —=n
%;()2 ZO: 2|+1 2 — 2|

Alan’s Aside

The last sum 1s tricky...
Think of the 2s as 1+1; the 3s, as 1+1+1; etc.
Now, add up a “layer” of 1s for the whole tree.

Then, add up a layer of 1s for the part of the tree where
the cost was 2 or more.

Then, add up a layer of 1s for the part of the tree where
the cost was 3 or more.

Etc.

2

Alan’s Aside
1

0

Steve’s Version of Alan’s Aside
2 21 1 &1

1 1& 1 1 1&1+1
_2'2;F_2'2,_17
1 1(& i &1
35553,
1 1(& 1 1
— 4 —+1|=—+—(S+1
2 2(;2'+j 2 2(+)

Today’s Outline

* Trees, Briefly
 Priority Queue ADT
* Heaps
— Implementing Priority Queue ADT

— Focus on Create: Heapify
— Brief introduction to d-Heaps

42

Thinking about Binary Heaps

e Observations

— finding a child/parent index is a multiply/divide by two

— operations jump widely through the heap

— deleteMins look at all (two) children of some nodes
— Inserts only care about parents of some nodes

— Inserts are at least as common as deleteMins

 Realities
— division and multiplication by powers of two are fast

— looking at one new piece of data sucks in a cache line
— with huge data sets, disk accesses dominate

43

Solution: d-Heaps

» Nodes have (up to) d children
o Still representable by array
 Good choices for d:

— optimize (non-asymptotic) @ @ @@ @ @@ @

performance based on

ratio of inserts/removes 1131712141815112111110/ 619

— make d a power of two
for efficiency

— fit one set of children in a cache line

— fit one set of children on a memory d—_heap mnemonic:
page/disk block d is for degree

d-Heap calculations

Calculations in terms of d:
— child:

— parent:

— root:

— next free:

Alan’s Aside: Easier to work pattern 1f

d-heap mnemonic:
you count from zero! P

d is for degreed

d-Heap calculations

Calculations in terms of d:
— child: 1*d+1 through 1*d+d

— parent: floor((i-1)/d)

— root: O

— next free: size

Alan’s Aside: Easier to work pattern 1f

d-heap mnemonic:
you count from zero! P

d is for degreed

(Steve’s d-Heap calculations)

Calculations in terms of d:
— child:

— parent:

— root:

— next free:

d-heap mnemonic:
d is for degree?

(Steve’s d-Heap calculations)

Calculations in terms of d:
— child: (i-1)*d+2 through i*d+1

— parent: floor((i-2)/d) + 1

— root: 1

113]7[214|8]5[121110/6(9

— next free: size+1

d-heap mnemonic:
d is for degreed

Rest of Today’s Learning Goals

« Get comfortable with C++ pointers, understand
the * and & operators.

« Draw diagrams to help understand code that
manipulates pointers.

49

C++ Reference Parameters

= & In a formal parameter makes the parameter
another name for the argument that was
passed in!

= It’s not a copy of the value of the
argument, the way normal parameter
passing works.

C++ Reference Parameters

void swap(int X, int y) {
Intt = X;
X=V;
y==t

}

Int a=0; int b=1;
swap(a,b);
cout << a<<*“ “<<b;

void swap(int &x, int &y) {
INtt = X;
X =V,
y==t

}

Int a=0; int b=1;
swap(a,b);
cout << a<<*“ “<<b;

C++ Reference Parameters

void swap(int X, int y) {
Intt=x;

X=V; ~ =
ot ©©
} -
Int a=0; int b=1;
swap(a,b);

cout<<a<<*“ “<<b;

void swap(int &x, int &y) {
Intt = X;

X = - };
y=r (@@
} >/
Int a=0; int b=1;
swap(a,b);

cout<<a<<*“ “<<b;

Old-School C (and C++)

void swap(int *x, int *y) {
INt *t = X;
X =Y,
y=t

}

Int a=0; int b=1;
swap(a,b);
cout << a<<*“ “<<b;

void swap(int *x, int *y) {
INt t = *X;
*y = *y;
*y — t;

]

Int a=0; int b=1;
swap(a,b);
cout << a<<*“ “<<b;

Old-School C (and C++)

void swap(int *x, int *y) {
INt *t = X;
X =V,
y=t

}

Int a=0; int b=1;
swap(a,b);
cout << a<<*“ “<<b;

void swap(int *x, int *y) {
INt t = *X;
*X — *y;

Int a=0; int b=1;
swap(a,b);
cout << a<<*“ “<<b;

Old-School C (and C++)

void swap(int *x, int *y) {
INt t = *X;
*y = *y;
*y — t;

}

Int a=0; Int b=1;
swap(&a,&b);
cout << a<<* “<<b;

void swap(int *x, int *y) {
INt t = *X;
*X — *y;

Int a=0; int b=1;
swap(a,b);
cout << a<<*“ “<<b;

Old-School C (and C++)

void swap(int *x, int *y) {
INt t = *X;

*y = *y; A
Int a=0; Int b=1;
swap(&a,&b);

cout<<a<<*“ “<<b;

void swap(int *x, int *y) {
INt t = *X;
*X — *y;

Int a=0; int b=1;
swap(a,b);
cout << a<<*“ “<<b;

