
CS221: Algorithms and
Data Structures

Analyzing Runtime

Alan J. Hu
(Borrowing many slides from Steve Wolfman)

1

Types of analysis
Orthogonal axes

– bound flavor
• upper bound (O)
• lower bound (Ω)
• asymptotically tight (Θ)

– analysis case
• worst case (adversary)
• average case
• best case
• “common” case

– analysis quality
• loose bound (any true analysis)
• tight bound (no better bound which is asymptotically different)2

Types of analysis
Orthogonal axes

– bound flavor
• upper bound (O)
• lower bound (Ω)
• asymptotically tight (Θ)

– analysis case
• worst case (adversary)
• average case
• best case
• “common” case

– analysis quality
• loose bound (any true analysis)
• tight bound (no better bound which is asymptotically different)3

WTF?!?

“Tight” Bounds

• Big-O and Big- are upper and lower bounds.
• Any upper or lower bound makes a true statement,

e.g.,:
– “Insertion sort runs in time O(n1000).” is a true statement!
– But it’s not very useful…

• We’d like a way to say that we have a good upper or
lower bound. This is called a “tight” bound.

“Tight” Bound

There are at least three common usages for calling a
bound “tight”:

1. Big-Theta, “asymptotically tight”
2. “no better bound which is asymptotically different”
3. Big-O upper bound on run time of an algorithm

matches provable worst-case lower-bound on any
solution algorithm.

“Tight” Bound – Def. 1

1. Big-Theta, “asymptotically tight”

This definition is formal and clear:
T(n) ∈ Θ(f(n)) if T(n) ∈ O(f(n)) and T(n) ∈ Ω (f(n))

but it is too rigid to capture practical intuition.
For example, what if T(n) = (n%2==0)? n*n : 1
Is T(n) ∈ O(n2) ?
Is T(n) ∈ Θ(n2) ?

“Tight” Bound – Def. 2

2. “no better bound which is asymptotically different”

This is the most common definition, and captures what
people usually want to say, but it’s not formal.

E.g., given same T(n), we want T(n) ∈ O(n2) to be
considered “tight”, but not T(n) ∈ O(n3)

But, T(n) is NOT Θ(n2), so isn’t T(n) ∈ O(T(n)) a
tighter bound?

“Tight” Bound – Def. 2

2. “no better `reasonable’ bound which is
asymptotically different”

This is the most common definition, and captures what
people usually want to say, but it’s not formal.

E.g., given same T(n), we want T(n) ∈ O(n2) to be
considered “tight”, but not T(n) ∈ O(n3)

But, T(n) is NOT Θ(n2), so isn’t T(n) ∈ O(T(n)) a
tighter bound?

“Tight” Bound – Def. 2

2. “no better `reasonable’ bound which is
asymptotically different”

This is the most common definition, and captures what
people usually want to say, but it’s not formal.

E.g., given same T(n), we want T(n) ∈ O(n2) to be
considered “tight”, but not T(n) ∈ O(n3)

But, T(n) is NOT Θ(n2), so isn’t T(n) ∈ O(T(n)) a
tighter bound?

“Reasonable” is defined subjectively, but it basically means a
simple combination of normal, common functions, i.e.,
anything on our list of common asymptotic complexity
categories (e.g., log n, n, nk, 2n, n!, etc.). There should be no
lower-order terms, and no unnecessary coefficients.

“Tight” Bound – Def. 2

2. “no better `reasonable’ bound which is
asymptotically different”

This is the most common definition, and captures what
people usually want to say, but it’s not formal.

E.g., given same T(n), we want T(n) ∈ O(n2) to be
considered “tight”, but not T(n) ∈ O(n3)

But, T(n) is NOT Θ(n2), so isn’t T(n) ∈ O(T(n)) a
tighter bound?

This is the definition we’ll use in CPSC 221 unless stated
otherwise.

“Tight” Bound – Def. 3

3. Big-O upper bound on run time of an algorithm
matches provable lower-bound on any algorithm.

The definition used in more advanced, theoretical
computer science:
– Upper bound is on a specific algorithm.
– Lower bound is on the problem in general.
– If the two match, you can’t get an asymptotically better

algorithm.
This is beyond this course, for the most part.
(Example: Sorting…)

“Tight (Def. 3)” Bound for Sorting

• We’ll see later that you can sort n numbers in
O(n log n) time. Is it possible to do better?

• The answer is no (if you know nothing about the
numbers and rely only on comparisons):
– How many different ways can you arrange n numbers?
– A sorting algorithm must distinguish between these n!

choices (because any of them might be the input).
– Each comparison can cut the set of possibilities in half.
– So, to distinguish which of the n! orders you were input

requires lg(n!) comparisons.
– lg(n!) is Θ(n log n)

“Tight” Bound – Def. 2

2. “no better `reasonable’ bound which is
asymptotically different”

This is the most common definition, and captures what
people usually want to say, but it’s not formal.

E.g., given same T(n), we want T(n) ∈ O(n2) to be
considered “tight”, but not T(n) ∈ O(n3)

But, T(n) is NOT Θ(n2), so isn’t T(n) ∈ O(T(n)) a
tighter bound?

This is the definition we’ll use in CPSC 221 unless stated
otherwise.

Analyzing Code

• C++ operations - constant time
• consecutive stmts - sum of times
• conditionals - max/sum of branches,

plus condition
• loops - sum of iterations
• function calls - cost of function body

Above all, use your head!
14

Analyzing Code
// Linear search
find(key, array)

for i = 1 to length(array) - 1 do
if array[i] == key
return i

return -1

Step 1: What’s the input size n?

15

Analyzing Code
// Linear search
find(key, array)

for i = 1 to length(array) - 1 do
if array[i] == key
return i

return -1

Step 2: What kind of analysis should we perform?
Worst-case? Best-case? Average-case?

Expected-case, amortized, …

16

Analyzing Code
// Linear search
find(key, array)

for i = 1 to length(array) - 1 do
if array[i] == key
return i

return -1

Step 3: How much does each line cost? (Are lines
the right unit?)

17

Analyzing Code
// Linear search
find(key, array)

for i = 1 to length(array) - 1 do
if array[i] == key
return i

return -1

Step 4: What’s T(n) in its raw form?

18

Analyzing Code
// Linear search
find(key, array)

for i = 1 to length(array) - 1 do
if array[i] == key
return i

return -1

Step 5: Simplify T(n) and convert to order notation.
(Also, which order notation: O, Θ, Ω?)

19

Analyzing Code
// Linear search
find(key, array)

for i = 1 to length(array) - 1 do
if array[i] == key
return i

return -1

Step 6: Casually name-drop the appropriate terms in order to
sound bracingly cool to colleagues: “Oh, linear search?
That’s tractable, polynomial time. What polynomial?
Linear, duh. See the name?! I hear it’s sub-linear on
quantum computers, though. Wild, eh?”

20

Analyzing Code
// Linear search
find(key, array)

for i = 1 to length(array) - 1 do
if array[i] == key
return i

return -1

Step 7: Prove the asymptotic bound by finding constants c
and n0 such that for all n ≥ n0, T(n) ≤ cn.

You usually won’t do this in practice.21

More Examples Than You Can
Shake a Stick At (#0)

// Linear search
find(key, array)

for i = 1 to length(array) - 1 do
if array[i] == key
return i

return -1

Here’s a whack-load of examples for us to:
1. find a function T(n) describing its runtime
2. find T(n)’s asymptotic complexity
3. find c and n0 to prove the complexity

22

METYCSSA (#1)
for i = 1 to n do
for j = 1 to n do
sum = sum + 1

Time complexity:
a. O(n)
b. O(n lg n)
c. O(n2)
d. O(n2 lg n)
e. None of these

23

METYCSSA (#2)
i = 1
while i < n do
for j = i to n do
sum = sum + 1

i++

Time complexity:
a. O(n)
b. O(n lg n)
c. O(n2)
d. O(n2 lg n)
e. None of these

24

Three METYCSSA2 Approaches:
Pure Math

25

Three METYCSSA2 Approaches:
Pure Math

26

Three METYCSSA2 Approaches:
Pure Math

27

Three METYCSSA2 Approaches:
Pure Math

Yay!!!
28

Three METYCSSA2 Approaches:
Faster Code/Slower Code

i = 1 takes “1” step
while i < n do i varies 1 to n-1
for j = i to n do j varies i to n
sum = sum + 1 takes “1” step

i++ takes “1” step

This code is “too hard” to deal with. So, let’s find just an
upper bound.

In which case we get to change the code so in any way that
makes it run no faster (even if it runs slower).

We’ll let j go from 1 to n rather than i to n. Since i ≥ 1, this is
no less work than the code was already doing… 29

Three METYCSSA2 Approaches:
Faster Code/Slower Code

i = 1 takes “1” step
while i < n do goes n-1 times
for j = 1 to n do goes n times
sum = sum + 1 takes “1” step

i++ takes “1” step

Now, each iteration of each loop body takes the same amount
of time as the next iteration, and we get:
𝑇𝑇 𝑛𝑛 = 1 + 𝑛𝑛 − 1 1 + 𝑛𝑛 = 1 + 𝑛𝑛2 − 1 = 𝑛𝑛2

Clearly, 𝑇𝑇 𝑛𝑛 ϵ 𝑂𝑂(𝑛𝑛2)!
BUT, that’s just an upper-bound (big-O), since we changed

the code, possibly making it run slower. 30

Three METYCSSA2 Approaches:
Faster Code/Slower Code

i = 1 takes “1” step
while i < n do i varies 1 to n-1
for j = i to n do j varies i to n
sum = sum + 1 takes “1” step

i++ takes “1” step

Let’s do a lower-bound, in which case we can make the code
run faster if we want. The trouble is that j starts at i. If it
started at n – 1 , we wouldn’t have to worry about i… but
we’d get an Ω(n) bound, which is lower than we’d like.

We can’t start j at something nice like n/2 because i grows
larger than n/2. So, let’s keep i from growing so large! 31

Three METYCSSA2 Approaches:
Faster Code/Slower Code

i = 1 takes “1” step
while i < n/2 + 1 do goes n/2 times
for j = i to n do j varies i to n
sum = sum + 1 takes “1” step

i++ takes “1” step

We used n/2 + 1 so the outer loop will go exactly n/2 times.

Now we can start j at n/2 + 1, knowing that j will never get
that large, so we’re certainly not making the code slower!

32

Three METYCSSA2 Approaches:
Faster Code/Slower Code

Yay!!!𝑇𝑇 𝑛𝑛 ∈ Ω(𝑛𝑛2) 33

Three METYCSSA2 Approaches:
Pretty Pictures!

i = 1 takes “1” step
while i < n do i varies 1 to n-1
for j = i to n do j varies i to n
sum = sum + 1 takes “1” step

i++ takes “1” step

Imagine drawing one point for each time the gets executed.
In the first iteration of the outer loop, you’d draw n points.
In the second, n-1. Then n-2, n-3, and so on down to
(about) 1. Let’s draw that picture…

34

Three METYCSSA2 Approaches:
Pretty Pictures!

* * * * * * * * * *
* * * * * * * * *
* * * * * * * *
* * * * * * *
* * * * * *
* * * * *
* * * *
* * *
* *
*

It’s a triangle, and its area is proportional to runtime

35

Three METYCSSA2 Approaches:
Pretty Pictures!

about n rows

ab
ou

t n
co

lu
m

ns

36

Note: Pretty Pictures and
Faster/Slower are the Same(ish)

37

METYCSSA (#3)
i = 1
while i < n do
for j = 1 to i do
sum = sum + 1

i += i

Time complexity:
a. O(n)
b. O(n lg n)
c. O(n2)
d. O(n2 lg n)
e. None of these

38

METYCSSA (#4)

• Conditional
if C then S1 else S2

• Loops
while C do S

39

METYCSSA (#5)

• Recursion almost always yields a recurrence
• Recursive max:

if length == 1: return arr[0]
else: return larger of arr[0] and max(arr[1..length-1])

T(1) <= b
T(n) <= c + T(n - 1) if n > 1

• Analysis
T(n) <= c + c + T(n - 2) (by substitution)
T(n) <= c + c + c + T(n - 3) (by substitution, again)
T(n) <= kc + T(n - k) (extrapolating 0 < k ≤ n)
T(n) <= (n – 1)c + T(1) = (n – 1)c + b (for k = n - 1)

• T(n)∈ 40

METYCSSA (#6): Mergesort
• Mergesort algorithm

– split list in half, sort first half, sort second half, merge together
• T(1) <= b

T(n) <= 2T(n/2) + cn if n > 1

• Analysis
T(n) <= 2T(n/2) + cn

<= 2(2T(n/4) + c(n/2)) + cn
= 4T(n/4) + cn + cn
<= 4(2T(n/8) + c(n/4)) + cn + cn
= 8T(n/8) + cn + cn + cn
<= 2kT(n/2k) + kcn (extrapolating 1 < k ≤ n)
<= nT(1) + cn lg n (for 2k = n or k = lg n)

• T(n)∈ 41

METYCSSA (#7): Fibonacci

• Recursive Fibonacci:
int Fib(n)
if (n == 0 or n == 1) return 1
else return Fib(n - 1) + Fib(n - 2)

• Lower bound analysis
• T(0), T(1) >= b

T(n) >= T(n - 1) + T(n - 2) + c if n > 1

• Analysis
let φ be (1 + √5)/2 which satisfies φ2 = φ + 1
show by induction on n that T(n) >= bφn - 1

42

Example #7 continued

• Basis: T(0) ≥ b > bφ-1 and T(1) ≥ b = bφ0

• Inductive step: Assume T(m) ≥ bφm - 1 for all m < n
T(n) ≥ T(n - 1) + T(n - 2) + c

≥ bφn-2 + bφn-3 + c
≥ bφn-3(φ + 1) + c
= bφn-3φ2 + c
≥ bφn-1

• T(n)∈
• Why? Same recursive call is made numerous times.

43

Example #7:
Learning from Analysis

• To avoid recursive calls
– store all basis values in a table
– each time you calculate an answer, store it in the table
– before performing any calculation for a value n

• check if a valid answer for n is in the table
• if so, return it

• This strategy is called “memoization” and is
closely related to “dynamic programming”

• How much time does this version take? 44

Final Concrete Example (#8):
Longest Common Subsequence

• Problem: given two strings (m and n), find the
longest sequence of characters which appears in
order in both strings
– lots of applications, DNA sequencing, blah, blah, blah

• Example:
– “search me” and “insane method” = “same”

45

Abstract Example (#9):
It’s Log!

Problem: find a tight bound on T(n) = lg(n!)

Time complexity:
a. O(n)
b. O(n lg n)
c. O(n2)
d. O(n2 lg n)
e. None of these

46

“Tight (Def. 3)” Bound for Sorting

• We’ll see later that you can sort n numbers in
O(n log n) time. Is it possible to do better?

• The answer is no (if you know nothing about the
numbers and rely only on comparisons):
– How many different ways can you arrange n numbers?
– A sorting algorithm must distinguish between these n!

choices (because any of them might be the input).
– Each comparison can cut the set of possibilities in half.
– So, to distinguish which of the n! orders you were input

requires lg(n!) comparisons.
– lg(n!) is Θ(n log n)

	CS221: Algorithms and �Data Structures��Analyzing Runtime
	Types of analysis
	Types of analysis
	“Tight” Bounds
	“Tight” Bound
	“Tight” Bound – Def. 1
	“Tight” Bound – Def. 2
	“Tight” Bound – Def. 2
	“Tight” Bound – Def. 2
	“Tight” Bound – Def. 2
	“Tight” Bound – Def. 3
	“Tight (Def. 3)” Bound for Sorting
	“Tight” Bound – Def. 2
	Analyzing Code
	Analyzing Code
	Analyzing Code
	Analyzing Code
	Analyzing Code
	Analyzing Code
	Analyzing Code
	Analyzing Code
	More Examples Than You Can Shake a Stick At (#0)
	METYCSSA (#1)
	METYCSSA (#2)
	Three METYCSSA2 Approaches:�Pure Math
	Three METYCSSA2 Approaches:�Pure Math
	Three METYCSSA2 Approaches:�Pure Math
	Three METYCSSA2 Approaches:�Pure Math
	Three METYCSSA2 Approaches:�Faster Code/Slower Code
	Three METYCSSA2 Approaches:�Faster Code/Slower Code
	Three METYCSSA2 Approaches:�Faster Code/Slower Code
	Three METYCSSA2 Approaches:�Faster Code/Slower Code
	Three METYCSSA2 Approaches:�Faster Code/Slower Code
	Three METYCSSA2 Approaches:�Pretty Pictures!
	Three METYCSSA2 Approaches:�Pretty Pictures!
	Three METYCSSA2 Approaches:�Pretty Pictures!
	Note: Pretty Pictures and Faster/Slower are the Same(ish)
	METYCSSA (#3)
	METYCSSA (#4)
	METYCSSA (#5)
	METYCSSA (#6): Mergesort
	METYCSSA (#7): Fibonacci
	Example #7 continued
	Example #7: �Learning from Analysis
	Final Concrete Example (#8):�Longest Common Subsequence
	Abstract Example (#9):�It’s Log!
	“Tight (Def. 3)” Bound for Sorting

