CS221: Algorithms and Data Structures Big-O

Alan J. Hu

(Borrowing some slides from Steve Wolfman)

Learning Goals

- Define big-O, big-Omega, and big-Theta: $\mathrm{O}(\cdot), \Omega(\cdot), \Theta(\cdot)$
- Explain intuition behind their definitions.
- Prove one function is big-O/Omega/Theta of another function.
- Simplify algebraic expressions using the rules of asymptotic analysis.
- List common asymptotic complexity orders, and how they compare.
- Work some examples.

Asymptotic Analysis of Algorithms

From last time, some key points:

- We will measure runtime, or memory usage, or whatever we are comparing, as a function in terms of the input size n.
- Because we are comparing algorithms, we only count "basic operations", and since we don't know how long each basic operation will really take, we ignore constant factors.
- We focus only on when n gets big.

Asymptotic Analysis of Algorithms

From last time, some key points:

- We will measure runtime, or memory usage, or whatever we are comparing, as a function in terms of the input size n.
- Because we are comparing algorithms, we only count "basic operations", and since we don't know how long each basic operation will really take, we ignore constant factors.
- We focus only on when n gets big.

Runtime Smackdown!

Alan's Old Thinkpad x40

- Older Laptop
- Pentium M 32bit CPU at 1.4 Ghz
- 1.5 GB of RAM

Pademelon

- 2011 Desktop PC
- Core i7-870 64bit CPU at 3Ghz w/ TurboBoost
- 16GB of RAM

Which computer is faster? By how much?

Runtime Smackdown II!

Tandy 200

- 1984 Laptop
- Intel 8085 8bit CPU at 2.4Mhz
- 24 KB of RAM
- Interpreted BASIC

Pademelon

- 2011 Desktop PC
- Core i7-870 64bit CPU at 3Ghz w/ TurboBoost
- 16GB of RAM
- Compiled C++

Which computer is faster? By how much?

Runtime Smackdown III!

Tandy 200

- 1984 Laptop
- Intel 8085 8bit CPU at 2.4Mhz
- 24 KB of RAM
- Interpreted BASIC

Pademelon

- 2011 Desktop PC
- Core i7-870 64bit CPU at 3Ghz w/ TurboBoost
- 16GB of RAM
- Compiled C++

Which computer is faster? By how much?

But what if we run asymptotically different algorithms?

Asymptotic Analysis of Algorithms

From last time, some key points:

- We will measure runtime, or memory usage, or whatever we are comparing, as a function in terms of \mathbf{n}.
- Because we are comparing algorithms, we only count "basic operations", and since we don't know how long each basic operation will really take, we ignore constant factors.
- We focus only on when n gets big.

Silicon Downs

Post \#1	Post \#2
$n^{3}+2 n^{2}$	$100 n^{2}+1000$
$n^{0.1}$	$\log n$
$n+100 n^{0.1}$	$2 n+10 \log n$
$5 n^{5}$	$1000 n^{15}$
$n^{-15} 2^{n} / 100$	$3 n^{7}+7 n$
$8^{2 l g} n$	$2^{m} n$

For each race, which "horse" grows bigger as n goes to infinity?
(Note that in practice, smaller is better.)
a.Left
b.Right
c.Tied
d.It depends e.I am opposed to algorithm racing.
a. Left
b. Right
c. Tied

Race I
d. It depends

$n^{3}+2 n^{2}$

vs. $100 n^{2}+1000$

a. Left
b. Right

Race II
$n^{0.1}$
VS.
c. Tied
d. It depends
$\log n$

a. Left
b. Right

Race III
c. Tied
d. It depends
$n+100 n^{0.1}$
vs. $2 n+10 \log n$

a. Left
b. Right

Race IV
c. Tied
d. It depends

$5 n^{5}$

VS.
n!

a. Left
b. Right
c. Tied

Race V
$n^{-15} 2^{n} / 100$
VS.
$1000 n^{15}$

a. Left
b. Right
c. Tied

Race VI
d. It depends

$8^{2 l g(n)}$
 VS.
 $3 n^{7}+7 n$

a. Left
b. Right
c. Tied
d. It depends

$m n^{3}$
VS.
$2^{m} n$

Silicon Downs

Post \#1	Post \#2	Grows Bigger
$n^{3}+2 n^{2}$	$100 n^{2}+1000$	$n^{3}+2 n^{2}$
$n^{0.1}$	$\log n$	$n^{0.1}$
$n+100 n^{0.1}$	$2 n+10 \log n$	$2 n+10 \log n(t i e d)$
$5 n^{5}$	$n!$	$n!$
$n^{-15} 2^{n} / 100$	$1000 n^{15}$	$n^{-15} 2^{n} / 100$
$8^{2 \lg n}$	$3 n^{7}+7 n$	$3 n^{7}+7 n$
m^{3}	$2^{m} n$	IT DEPENDS ${ }^{7}$

Order Notation

- We’ve seen why we focus on the big inputs.
- We modeled that formally as the asymptotic behavior, as input size goes to infinity.
- We looked at a bunch of Steve’s "races", to see which function "wins" or "loses".
- How do we formalize the notion of winning? How do we formalize that one function "eventually catches up and grows faster"?

Order Notation

- We’ve seen why we focus on the big inputs.
- We modeled that formally as the asymptotic behavior, as input size goes to infinity.
- We looked at a bunch of Steve’s "races", to see which function "wins" or "loses".
- How do we formalize the notion of winning? How do we formalize that one function "eventually catches up and grows faster"?
a. Left
b. Right
c. Tied

Race I
d. It depends

$n^{3}+2 n^{2}$

vs. $100 n^{2}+1000$

a. Left
b. Right

Race II
$n^{0.1}$
VS.
c. Tied
d. It depends
$\log n$

a. Left
b. Right

Race III
c. Tied
d. It depends
$n+100 n^{0.1}$
vs. $2 n+10 \log n$

How to formalize winning?

- How to formally say that there's some crossover point, after which one function is bigger than the other?
- How to formally say that you don't care about a constant factor between the two functions?

Order Notation - Big-O

- $\mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{f}(\mathrm{n}))$ if there are constants $\mathrm{c}>0$ and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$

Order Notation - Big-O

- $\mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{f}(\mathrm{n}))$ if there are constants $\mathrm{c}>0$ and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$
- Why the n_{0} ?
- Why the c ?

Order Notation - Big-O

- $\mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{f}(\mathrm{n}))$ if there are constants $\mathrm{c}>0$ and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$
- Why the \in ?
(Many people write $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n})$),
but this is sloppy. The \in shows you why
you should never write $\mathrm{O}(\mathrm{f}(\mathrm{n}))=\mathrm{T}(\mathrm{n})$,
with the big-O on the left-hand side.)

Order Notation - Big-O

- $\mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{f}(\mathrm{n}))$ if there are constants $\mathrm{c}>0$ and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$
- Intuitively, what does this all mean?

Order Notation - Big-O

- $\mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{f}(\mathrm{n}))$ if there are constants $\mathrm{c}>0$ and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$
- Intuitively, what does this all mean?

The function $\mathrm{f}(\mathrm{n})$ is sort of, asymptotically "greater than or equal to" the function $T(n)$.
In the "long run", $\mathrm{f}(\mathrm{n})$ (multiplied by a suitable constant) will upper-bound $\mathrm{T}(\mathrm{n})$.

Order Notation - Big-Theta and Big-Omega

- $\mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{f}(\mathrm{n}))$ if there are constants $\mathrm{c}>0$ and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$
- $T(n) \in \Omega(f(n))$ if $f(n) \in O(T(n))$
- $T(n) \in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$

Examples

$10,000 n^{2}+25 n \in \Theta\left(n^{2}\right)$
$10^{-10} n^{2} \in \Theta\left(n^{2}\right)$
$n \log n \in O\left(n^{2}\right)$
$n \log n \in \Omega(n)$
$\mathrm{n}^{3}+4 \in \mathrm{O}\left(\mathrm{n}^{4}\right)$ but not $\Theta\left(\mathrm{n}^{4}\right)$
$n^{3}+4 \in \Omega\left(n^{2}\right)$ but not $\Theta\left(n^{2}\right)$

Proofs?

$10,000 n^{2}+25 n \in \Theta\left(n^{2}\right)$
$10^{-10} n^{2} \in \Theta\left(n^{2}\right)$
$n \log n \in O\left(n^{2}\right)$
$n \log n \in \Omega(n)$
$\mathrm{n}^{3}+4 \in \mathrm{O}\left(\mathrm{n}^{4}\right)$ but not $\Theta\left(\mathrm{n}^{4}\right)$
$n^{3}+4 \in \Omega\left(n^{2}\right)$ but not $\Theta\left(n^{2}\right)$

How do you prove a big-O? a big- Ω ? a big- Θ ?

Proving a Big-O

- $T(n) \in O(f(n))$ if there are constants $c>0$ and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$
- Formally, to prove $T(n) \in O(f(n))$, you must show:

$$
\exists c>0, n_{0} \forall n>n_{0}[T(n) \leq c f(n)]
$$

- How do you prove a "there exists" property?

Proving a "There exists" Property

How do you prove "There exists a good restaurant in Vancouver"?

How do you prove a property like

$$
\exists c[c=3 c+1]
$$

Proving a $\exists \ldots \forall \ldots$ Property

How do you prove "There exists a restaurant in Vancouver, where all items on the menu are less than \$10"?

How do you prove a property like

$$
\exists c \forall x\left[c \leq x^{2}-10\right]
$$

Proving a Big-O

Formally, to prove $T(n) \in O(f(n))$, you must show:

$$
\exists c>0, n_{0} \forall n>n_{0}[T(n) \leq c f(n)]
$$

So, we have to come up with specific values of c and n_{0} that "work", where "work" means that for any $\mathrm{n}>\mathrm{n}_{0}$ that someone picks, the formula holds:

$$
[T(n) \leq c f(n)]
$$

Proving Big-O -- Example

$10,000 n^{2}+25 n \in \Theta\left(n^{2}\right)$
$10^{-10} n^{2} \in \Theta\left(n^{2}\right)$
$n \log n \in O\left(n^{2}\right)$
$n \log n \in \Omega(n)$
$\mathrm{n}^{3}+4 \in \mathrm{O}\left(\mathrm{n}^{4}\right)$ but not $\Theta\left(\mathrm{n}^{4}\right)$
$n^{3}+4 \in \Omega\left(n^{2}\right)$ but not $\Theta\left(n^{2}\right)$

Prove $n \log n \in O\left(n^{2}\right)$

- Guess or figure out values of c and n_{0} that will work.
(Let's assume base-10 logarithms.)

Prove $n \log n \in O\left(n^{2}\right)$

- Guess or figure out values of c and n_{0} that will work.
(Let's assume base-10 logarithms.)
- Turns out $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$ works!
(What happens if you guess wrong?)

Prove $n \log n \in O\left(n^{2}\right)$

- Guess or figure out values of c and n_{0} that will work.
(Let’s assume base-10 logarithms.)
- Turns out $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$ works!
- Now, show that $n \log n<=n^{2}$, for all $n>1$

Prove $n \log n \in O\left(n^{2}\right)$

- Guess or figure out values of c and n_{0} that will work.
(Let’s assume base-10 logarithms.)
- Turns out $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$ works!
- Now, show that $n \log n<=n^{2}$, for all $n>1$
- This is fairly trivial: $\log \mathrm{n}<=\mathrm{n}($ for $\mathrm{n}>1$)

Multiply both sides by $n(O K$, since $n>1>0)$

Aside: Writing Proofs

- In lecture, my goal is to give you intuition.
- I will just sketch the main points, but not fill in all details.
- When you write a proof (homework, exam, reports, papers), be sure to write it out formally!
- Standard format makes it much easier to write!
- Class website has links to notes with standard tricks, examples
- Textbook has good examples of proofs, too.
- Copy the style, structure, and format of these proofs.
- On exams and homeworks, you'll get more credit.
- In real life, people will believe you more.

To Prove $n \log n \in O\left(n^{2}\right)$

Proof:

By the definition of big-O, we must find values of c and n_{0} such that for all $n \geq n_{0}, n \log n \leq n^{2}$.
Consider $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$.
For all $n \geq 1, \log n \leq n$.
Therefore, $\log n \leq c n$, since $c=1$.
Multiplying both sides by n (and since $n \geq n_{0}=1$), we have $n \log n \leq n^{2}$.
Therefore, $n \log n \in O\left(n^{2}\right)$.
QED
(This is more detail than you'll use in the future, but until you learn what you can skip, fill in the details.)

Proving Big- Ω

- Just like proving Big-O, but backwards...

Proving Big- Θ

- Just prove Big-O and Big- Ω

Proving Big- Θ-- Example

$10,000 n^{2}+25 n \in \Theta\left(n^{2}\right)$
$10^{-10} n^{2} \in \Theta\left(n^{2}\right)$
$n \log n \in O\left(n^{2}\right)$
$n \log n \in \Omega(n)$
$\mathrm{n}^{3}+4 \in \mathrm{O}\left(\mathrm{n}^{4}\right)$ but not $\Theta\left(\mathrm{n}^{4}\right)$
$n^{3}+4 \in \Omega\left(n^{2}\right)$ but not $\Theta\left(n^{2}\right)$

Prove 10,000 $n^{2}+25 n \in O\left(n^{2}\right)$

- What values of c and n_{0} work?
(Lots of answers will work...)

Prove 10,000 $n^{2}+25 n \in O\left(n^{2}\right)$

- What values of c and n_{0} work? I'll use $\mathrm{c}=10025$ and $\mathrm{n}_{0}=1$.
$10,000 n^{2}+25 n<=10,000 n^{2}+25 n^{2}$

$$
<=10,025 n^{2}
$$

Prove $10,000 n^{2}+25 n \in \Omega\left(n^{2}\right)$

- What is this in terms of Big-O?

Prove $n^{2} \in O\left(10,000 n^{2}+25 n\right)$

- What values of c and n_{0} work?

Prove $n^{2} \in O\left(10,000 n^{2}+25 n\right)$

- What values of c and n_{0} work? I'll use $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$.

$$
\begin{aligned}
\mathrm{n}^{2} & <=10,000 \mathrm{n}^{2} \\
& <=10,000 \mathrm{n}^{2}+25 \mathrm{n}
\end{aligned}
$$

Therefore, $10,000 n^{2}+25 n \in \Theta\left(n^{2}\right)$

Mounties Find Silicon Downs Fixed

- The fix sheet (typical growth rates in order)
- constant:
- logarithmic:
- poly-log:
- linear:
- (log-linear):
- (superlinear):
- quadratic:
- cubic:
- polynomial: $\quad \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
- exponential: $\quad \mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}\left(\mathrm{n}^{1+c}\right)$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\mathrm{O}\left(\mathrm{n}^{3}\right)$
$\left(\log _{k} \mathrm{n}, \log \mathrm{n}^{2} \in \mathrm{O}(\log \mathrm{n})\right)$
(k is a constant >1)
$\mathrm{O}(\mathrm{n} \log \mathrm{n}) \quad$ (usually called " $\mathrm{n} \log \mathrm{n}$ ")
(k is a constant) "tractable"
(c is a constant > 1)
"intractable"

Asymptotic Analysis Hacks

- These are quick tricks to get big- Θ category.
- Eliminate low order terms
$-4 \mathrm{n}+5 \Rightarrow 4 \mathrm{n}$
$-0.5 n \log n-2 n+7 \Rightarrow 0.5 n \log n$
$-2^{\mathrm{n}}+\mathrm{n}^{3}+3 \mathrm{n} \Rightarrow 2^{\mathrm{n}}$
- Eliminate coefficients
$-4 \mathrm{n} \Rightarrow \mathrm{n}$
$-0.5 n \log n \Rightarrow n \log n$
$-\mathrm{n} \log \left(\mathrm{n}^{2}\right)=2 \mathrm{n} \log \mathrm{n} \Rightarrow \mathrm{n} \log \mathrm{n}$

Log Aside

$\boldsymbol{\operatorname { l o g }}_{\mathbf{a}} \mathbf{b}$ means "the exponent that turns \mathbf{a} into \mathbf{b} "
$\mathbf{l g} \mathbf{x}$ means " $\log _{2} \mathbf{x}$ " (our usual \log in CS)
$\log x$ means " $\log _{10} x$ " (the common log)
ln \mathbf{x} means " $\log _{\mathrm{e}} \mathbf{x}$ " (the natural \log)

But... $\mathbf{O}(\lg \mathrm{n})=\mathbf{O}(\log \mathrm{n})=\mathbf{O}(\ln \mathrm{n})$ because: $\log _{a} b=\log _{c} b / \log _{c} a($ for $c>1$) so, there's just a constant factor between log bases

USE those cheat sheets!

- Which is faster, n^{3} or $n^{3} \log n$?
- Which is faster, n^{3} or $\mathrm{n}^{3.01} / \log \mathrm{n}$?
(Split it up and use the "dominance" relationships.)

Rates of Growth

- Suppose a computer executes 10^{12} ops per second:

$n=$	10	100	1,000	10,000	10^{12}
n	$10^{-11} s$	$10^{-10} s$	$10^{-9} s$	$10^{-8} \mathrm{~s}$	1 s
$\mathrm{n} \log \mathrm{n}$	$10^{-11} \mathrm{~s}$	$10^{-9} \mathrm{~s}$	$10^{-8} \mathrm{~s}$	$10^{-7} \mathrm{~s}$	40 s
n^{2}	$10^{-10} \mathrm{~s}$	$10^{-8} \mathrm{~s}$	$10^{-6} \mathrm{~s}$	$10^{-4} \mathrm{~s}$	$10^{12} \mathrm{~s}$
n^{3}	$10^{-9} \mathrm{~s}$	$10^{-6} \mathrm{~s}$	$10^{-3} \mathrm{~s}$	1 s	$10^{24} \mathrm{~s}$
2^{n}	$10^{-9} \mathrm{~s}$	$10^{18} \mathrm{~s}$	$10^{289} \mathrm{~s}$		

$$
10^{4} \mathrm{~s}=2.8 \mathrm{hrs}
$$

$10^{18} \mathrm{~S}=30$ billion years

