CS221: Algorithms and Data Structures Big-O

Alan J. Hu

(Borrowing some slides from Steve Wolfman)

Learning Goals

- Define big-O, big-Omega, and big-Theta: $O(\bullet)$, $\Omega(\bullet)$, $\Theta(\bullet)$
- Explain intuition behind their definitions.
- Prove one function is big-O/Omega/Theta of another function.
- Simplify algebraic expressions using the rules of asymptotic analysis.
- List common asymptotic complexity orders, and how they compare.
- Work some examples.

Asymptotic Analysis of Algorithms

From last time, some key points:

- We will measure runtime, or memory usage, or whatever we are comparing, as a **function in terms of the input size n.**
- Because **we are comparing algorithms**, we only count "basic operations", and since we don't know how long each basic operation will really take, **we ignore constant factors.**
- We focus only on when n gets big.

Asymptotic Analysis of Algorithms

From last time, some key points:

- We will measure runtime, or memory usage, or whatever we are comparing, as a **function in terms of the input size n.**
- Because we are comparing algorithms, we only count "basic operations", and since we don't know how long each basic operation will really take, we ignore constant factors.
- We focus only on when n gets big.

Runtime Smackdown!

Alan's Old Thinkpad x40

- Older Laptop
- Pentium M 32bit CPU at 1.4Ghz
- 1.5 GB of RAM

Pademelon

- 2011 Desktop PC
- Core i7-870 64bit CPU at 3Ghz w/ TurboBoost
- 16GB of RAM

Which computer is faster? By how much?

Runtime Smackdown II!

Tandy 200

- 1984 Laptop
- Intel 8085 8bit CPU at 2.4Mhz
- 24KB of RAM
- Interpreted BASIC

Pademelon

- 2011 Desktop PC
- Core i7-870 64bit CPU at 3Ghz w/ TurboBoost
- 16GB of RAM
- Compiled C++

Which computer is faster? By how much?

Runtime Smackdown III!

Tandy 200

- 1984 Laptop
- Intel 8085 8bit CPU at 2.4Mhz
- 24KB of RAM
- Interpreted BASIC

Pademelon

- 2011 Desktop PC
- Core i7-870 64bit CPU at 3Ghz w/ TurboBoost
- 16GB of RAM
- Compiled C++

Which computer is faster? By how much?

But what if we run asymptotically different algorithms?

Asymptotic Analysis of Algorithms

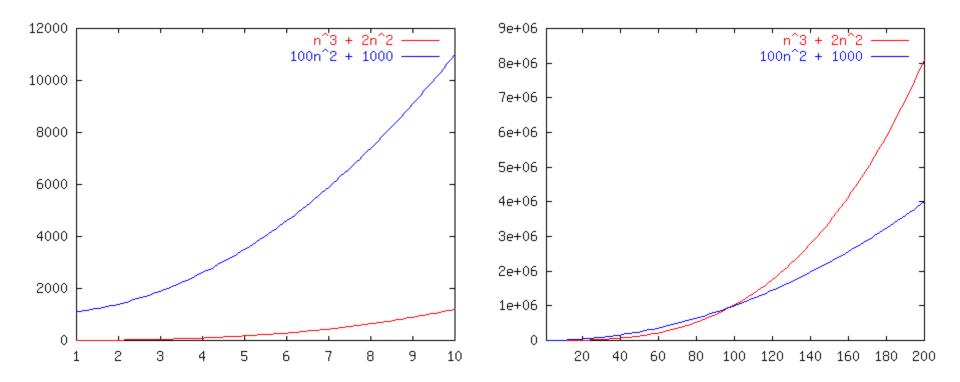
From last time, some key points:

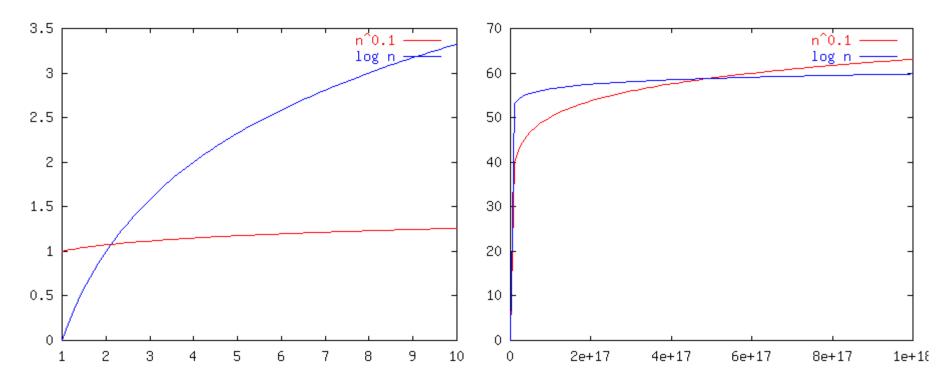
- We will measure runtime, or memory usage, or whatever we are comparing, as a **function in terms of n.**
- Because we are comparing algorithms, we only count "basic operations", and since we don't know how long each basic operation will really take, we ignore constant factors.
- We focus only on when n gets big.

Silicon Downs

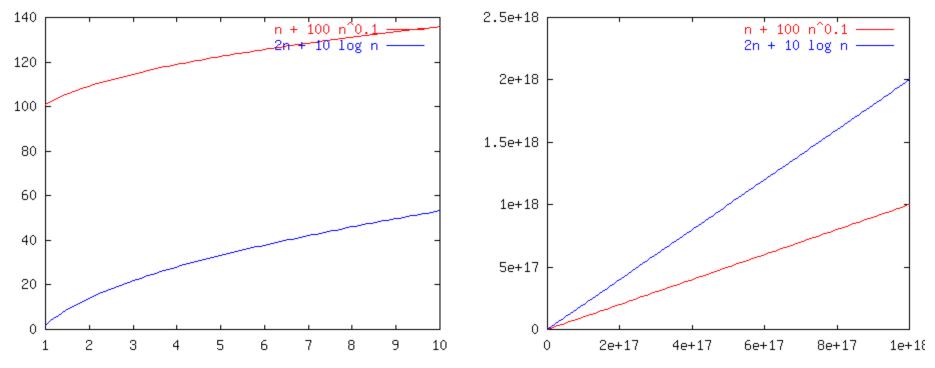
Post #1	Post #2	For each race, which "horse"
$n^3 + 2n^2$	$100n^2 + 1000$	grows bigger as n goes to infinity?
n ^{0.1}	log n	(Note that in practice, smaller
$n + 100n^{0.1}$	2n + 10 log n	is better.)
5n ⁵	n!	a.Left b.Pight
n ⁻¹⁵ 2 ⁿ /100	1000n ¹⁵	b.Right c.Tied
8 ^{21g n}	$3n^7 + 7n$	d.It depends e.I am opposed to algorithm racing.

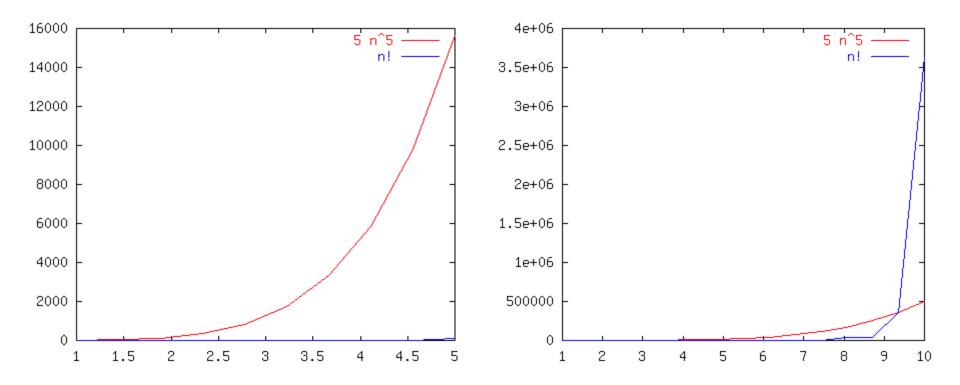
$\begin{array}{ccc} a. & Left \\ b. & Right \\ c. & Tied \\ d. & It depends \end{array}$ $\begin{array}{ccc} n^3 + 2n^2 & VS. \ 100n^2 \ + \ 1000 \end{array}$





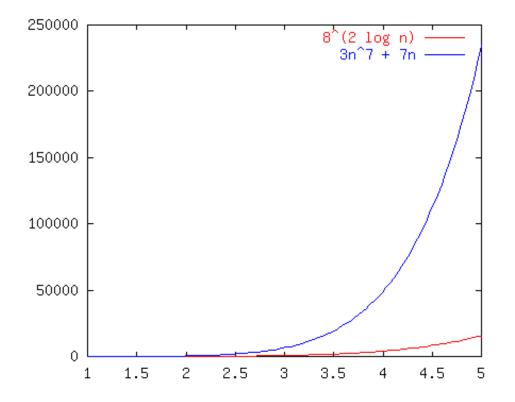
a. Left b. Right c. Tied d. It depends **n + 100n^{0.1}** VS. 2n + 10 log n





 $\begin{array}{ccc} a. & Left \\ b. & Right \\ c. & Tied \\ d. & It depends \end{array}$ $n^{-15}2^n/100 \quad VS. \quad 1000n^{15}$





Silicon Downs

Post #1	Post #2	Grows Bigger
$n^3 + 2n^2$	$100n^2 + 1000$	$n^3 + 2n^2$
n ^{0.1}	log n	n ^{0.1}
$n + 100n^{0.1}$	2n + 10 log n	2n + 10 log n (tied)
5n ⁵	n!	n!
n ⁻¹⁵ 2 ⁿ /100	1000n ¹⁵	$n^{-15}2^{n}/100$
8 ^{21g} n	$3n^7 + 7n$	$3n^7 + 7n$
mn ³	$2^{m}n$	IT DEPENDS ⁷

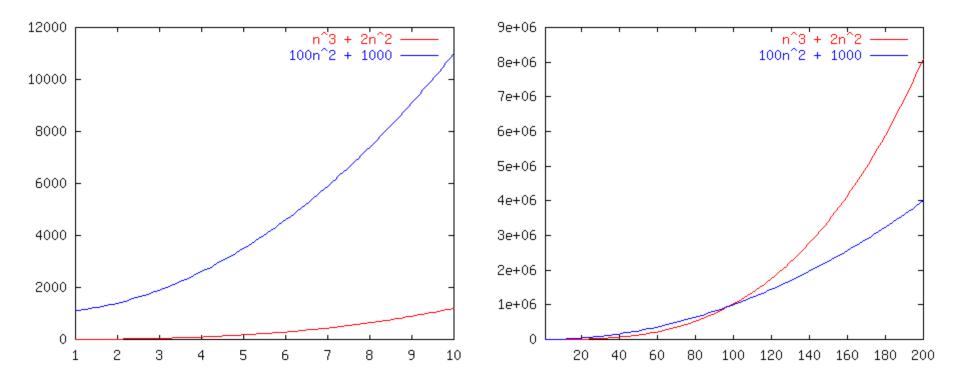
Order Notation

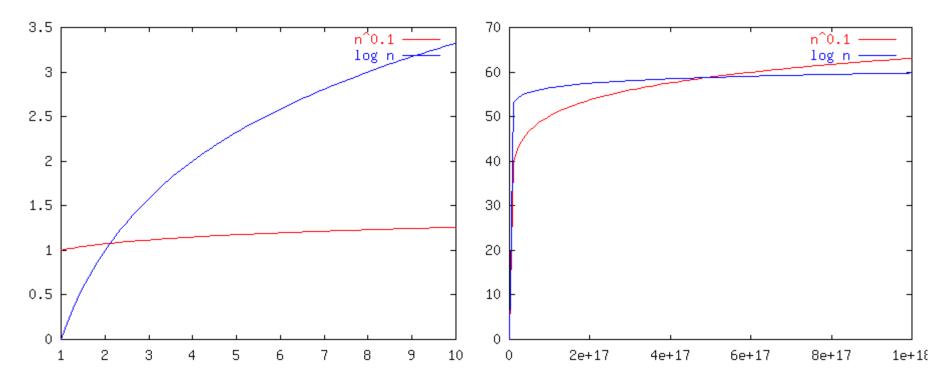
- We've seen why we focus on the big inputs.
- We modeled that formally as the asymptotic behavior, as input size goes to infinity.
- We looked at a bunch of Steve's "races", to see which function "wins" or "loses".
- How do we formalize the notion of winning? How do we formalize that one function "eventually catches up and grows faster"?

Order Notation

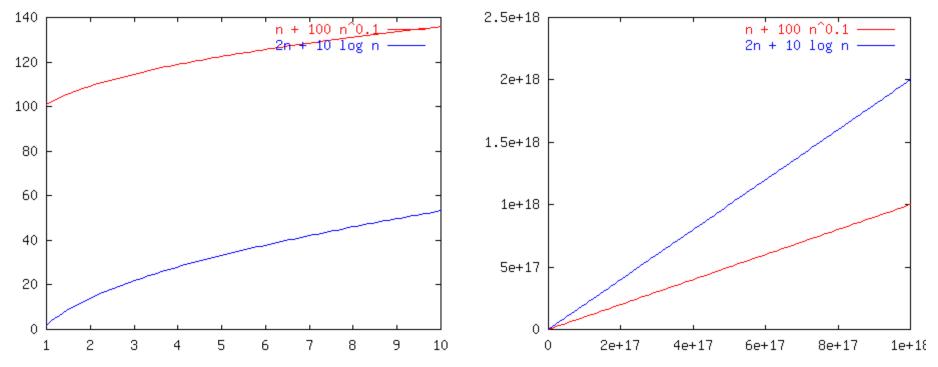
- We've seen why we focus on the big inputs.
- We modeled that formally as the asymptotic behavior, as input size goes to infinity.
- We looked at a bunch of Steve's "races", to see which function "wins" or "loses".
- How do we formalize the notion of winning? How do we formalize that one function "eventually catches up and grows faster"?

$\begin{array}{ccc} a. & Left \\ b. & Right \\ c. & Tied \\ d. & It depends \end{array}$ $\begin{array}{ccc} n^3 + 2n^2 & VS. \ 100n^2 \ + \ 1000 \end{array}$





a. Left b. Right c. Tied d. It depends **n + 100n^{0.1}** VS. 2n + 10 log n



How to formalize winning?

- How to formally say that there's some crossover point, after which one function is bigger than the other?
- How to formally say that you don't care about a constant factor between the two functions?

• $T(n) \in O(f(n))$ if there are constants c > 0 and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$

- $T(n) \in O(f(n))$ if there are constants c > 0 and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$
- Why the n_0 ?
- Why the c ?

- $T(n) \in O(f(n))$ if there are constants c > 0 and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$
- Why the \in ?

(Many people write T(n)=O(f(n)), but this is sloppy. The \in shows you why you should never write O(f(n))=T(n), with the big-O on the left-hand side.)

- $T(n) \in O(f(n))$ if there are constants c > 0 and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$
- Intuitively, what does this all mean?

- $T(n) \in O(f(n))$ if there are constants c > 0 and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$
- Intuitively, what does this all mean?

The function f(n) is sort of, asymptotically "greater than or equal to" the function T(n).

In the "long run", f(n) (multiplied by a suitable constant) will upper-bound T(n).

Order Notation – Big-Theta and Big-Omega

- $T(n) \in O(f(n))$ if there are constants c > 0 and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$
- $T(n) \in \Omega$ (f(n)) if $f(n) \in O(T(n))$
- $T(n) \in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$

Examples

 $\begin{aligned} &10,000 \ n^2 + 25 \ n \in \Theta(n^2) \\ &10^{-10} \ n^2 \in \Theta(n^2) \\ &n \ \log n \in O(n^2) \\ &n \ \log n \in \Omega(n) \\ &n^3 + 4 \in O(n^4) \ \text{but not } \Theta(n^4) \\ &n^3 + 4 \in \Omega(n^2) \ \text{but not } \Theta(n^2) \end{aligned}$

Proofs?

 $10,000 n^{2} + 25 n \in \Theta(n^{2})$ $10^{-10} n^{2} \in \Theta(n^{2})$ $n \log n \in O(n^{2})$ $n \log n \in \Omega(n)$ $n^{3} + 4 \in O(n^{4}) \text{ but not } \Theta(n^{4})$ $n^{3} + 4 \in \Omega(n^{2}) \text{ but not } \Theta(n^{2})$

How do you prove a big-O? a big- Ω ? a big- Θ ?

Proving a Big-O

- $T(n) \in O(f(n))$ if there are constants c > 0 and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$
- Formally, to prove $T(n) \in O(f(n))$, you must show:

$$\exists c > 0, n_0 \forall n > n_0 \left[T(n) \le c f(n) \right]$$

• How do you prove a "there exists" property?

Proving a "There exists" Property

How do you prove "There exists a good restaurant in Vancouver"?

How do you prove a property like $\exists c [c = 3c + 1]$

Proving a $\exists ... \forall ...$ Property

How do you prove "There exists a restaurant in Vancouver, where all items on the menu are less than \$10"?

How do you prove a property like $\exists c \forall x \left[c \le x^2 - 10 \right]$

Proving a Big-O

Formally, to prove $T(n) \in O(f(n))$, you must show: $\exists c > 0, n_0 \forall n > n_0 \left[T(n) \le cf(n) \right]$

So, we have to come up with specific values of c and n_0 that "work", where "work" means that for any $n>n_0$ that someone picks, the formula holds:

$$\left[T(n) \le c f(n)\right]$$

Proving Big-O -- Example

 $\begin{array}{l} 10,\!000 \; n^2 + 25 \; n \, \in \, \Theta(n^2) \\ 10^{\text{-}10} \; n^2 \, \in \, \Theta(n^2) \end{array}$

 $n \log n \in O(n^2)$

n log n $\in \Omega(n)$ n³ + 4 $\in O(n^4)$ but not $\Theta(n^4)$ n³ + 4 $\in \Omega(n^2)$ but not $\Theta(n^2)$

• Guess or figure out values of c and n₀ that will work.

(Let's assume base-10 logarithms.)

• Guess or figure out values of c and n₀ that will work.

(Let's assume base-10 logarithms.)

Turns out c=1 and n₀ = 1 works!
(What happens if you guess wrong?)

• Guess or figure out values of c and n₀ that will work.

(Let's assume base-10 logarithms.)

- Turns out c=1 and $n_0 = 1$ works!
- Now, show that $n \log n \le n^2$, for all $n \ge 1$

• Guess or figure out values of c and n₀ that will work.

(Let's assume base-10 logarithms.)

- Turns out c=1 and n₀ = 1 works!
- Now, show that $n \log n \le n^2$, for all $n \ge 1$
- This is fairly trivial: log n <= n (for n>1) Multiply both sides by n (OK, since n>1>0)

Aside: Writing Proofs

- In lecture, my goal is to give you intuition.
 - I will just sketch the main points, but not fill in all details.
- When you *write* a proof (homework, exam, reports, papers), be sure to write it out formally!
 - Standard format makes it much easier to write!
 - Class website has links to notes with standard tricks, examples
 - Textbook has good examples of proofs, too.
 - Copy the style, structure, and format of these proofs.
 - On exams and homeworks, you'll get more credit.
 - In real life, people will believe you more.

Proof:

- By the definition of big-O, we must find values of c and n_0 such that for all $n \ge n_0$, $n \log n \le cn^2$.
- Consider c=1 and $n_0 = 1$.
- For all $n \ge 1$, log $n \le n$.
- Therefore, $\log n \le cn$, since c=1.
- Multiplying both sides by n (and since $n \ge n_0=1$), we have $n \log n \le cn^2$.
- Therefore, $n \log n \in O(n^2)$.

QED

(This is more detail than you'll use in the future, but until you learn what you can skip, fill in the details.)

Proving Big- Ω

• Just like proving Big-O, but backwards...

Proving Big- Θ

• Just prove Big-O and Big- Ω

Proving Big- Θ -- Example

$10,000 \text{ n}^2 + 25 \text{ n} \in \Theta(n^2)$

 $10^{-10} n^{2} \in \Theta(n^{2})$ $n \log n \in O(n^{2})$ $n \log n \in \Omega(n)$ $n^{3} + 4 \in O(n^{4}) \text{ but not } \Theta(n^{4})$ $n^{3} + 4 \in \Omega(n^{2}) \text{ but not } \Theta(n^{2})$

Prove 10,000 $n^2 + 25 n \in O(n^2)$

• What values of c and n₀ work?

(Lots of answers will work...)

Prove 10,000 $n^2 + 25 n \in O(n^2)$

• What values of c and n_0 work? I'll use c=10025 and $n_0 = 1$.

Prove 10,000 $n^2 + 25 n \in \Omega(n^2)$

• What is this in terms of Big-O?

Prove $n^2 \in O(10,000 n^2 + 25 n)$

• What values of c and n₀ work?

Prove $n^2 \in O(10,000 n^2 + 25 n)$

What values of c and n₀ work?
I'll use c=1 and n₀ = 1.

$$n^2 \le 10,000 n^2$$

 $\le 10,000 n^2 + 25 n$

Therefore, 10,000 $n^2 + 25 n \in \Theta(n^2)$

Mounties Find Silicon Downs Fixed

• The fix sheet (typical growth rates in order)

O(n)

 $O(n^2)$

 $O(n \log n)$

- constant: O(1)
- logarithmic: O(log n)
- poly-log: $O(\log^k n)$
- linear:
- (log-linear):
- (superlinear): $O(n^{1+c})$
- quadratic:
- cubic: $O(n^3)$
- polynomial: $O(n^k)$
- exponential: $O(c^n)$

 $(\log_k n, \log n^2 \in O(\log n))$ (k is a constant >1)

(usually called "n log n")(c is a constant, 0 < c < 1)

Asymptotic Analysis Hacks

- These are quick tricks to get big- Θ category.
- Eliminate low order terms
 - $-4n+5 \Longrightarrow 4n$
 - 0.5 n log n 2n + 7 ⇒ 0.5 n log n
 - $-2^n + n^3 + 3n \Longrightarrow 2^n$
- Eliminate coefficients
 - $-4n \Rightarrow n$
 - $0.5 n \log n \Rightarrow n \log n$
 - $n \log (n^2) = 2 n \log n \Rightarrow n \log n$

Log Aside

 $log_{a}b means "the exponent that turns a into b"$ lg x means "log₂x" (our usual log in CS) log x means "log₁₀x" (the common log) ln x means "log_ex" (the natural log)

But... O(lg n) = O(log n) = O(ln n) because:
log_ab = log_cb / log_ca (for c > 1)
so, there's just a constant factor between log bases

USE those cheat sheets!

• Which is faster, n³ or n³ log n?

• Which is faster, n^3 or $n^{3.01}/\log n$? (Split it up and use the "dominance" relationships.)

Rates of Growth

• Suppose a computer executes 10¹² ops per second:

n =	10	100	1,000	10,000	10 ¹²
n	10 ⁻¹¹ s	10^{-10} s	$10^{-9} \mathrm{s}$	$10^{-8} \mathrm{s}$	1s
n log n	10 ⁻¹¹ s	$10^{-9} \mathrm{s}$	$10^{-8} \mathrm{s}$	$10^{-7} \mathrm{s}$	40s
n^2	10^{-10} s	$10^{-8} \mathrm{s}$	10^{-6} s	$10^{-4} \mathrm{s}$	10^{12} s
n ³	$10^{-9} \mathrm{s}$	10^{-6} s	$10^{-3} \mathrm{s}$	1s	10^{24} s
2^n	$10^{-9} \mathrm{s}$	10^{18} s	10^{289} s		

 10^4 s = 2.8 hrs