
CS221: Algorithms and
Data Structures

Asymptotic Analysis
Alan J. Hu

(Borrowing slides from Steve Wolfman)

1

Learning Goals
By the end of this unit, you will be able to…

• Define which program operations we measure in an
algorithm in order to approximate its efficiency.

• Define “input size” and determine the effect (in terms of
performance) that input size has on an algorithm.

• Give examples of common practical limits of problem size
for each complexity class.

• Give examples of tractable, intractable, and undecidable
problems.

• Given code, write a formula which measures the number of
steps executed as a function of the size of the input (N).

Continued…2

Learning Goals
By the end of this unit, you will be able to…

• Compute the worst-case asymptotic complexity of an
algorithm (e.g., the worst possible running time based on
the size of the input (N)).

• Categorize an algorithm into one of the common
complexity classes.

• Explain the differences between best-, worst-, and average-
case analysis.

• Describe why best-case analysis is rarely relevant and how
worst-case analysis may never be encountered in practice.

• Given two or more algorithms, rank them in terms of their
time and space complexity.

3

Today’s Learning Goals/Outline

• Why and on what criteria you might want to compare
algorithms

• Performance (time, space) is a function of the inputs.
– We usually simplify that to be a function of the size of the input.
– What are worst-case, average-case, common case, and best case

analysis?

• What is and why do asymptotic analysis?
• Examples of asymptotic behavior to build intuition.

4

Comparing Algorithms

• Why?
• What do you judge them on?

Comparing Algorithms

• Why?
• What do you judge them on?

Many possibilities…
– Time (How long does it take to run?)
– Space (How much memory does it take?)
– Other attributes?

• Expensive operations, e.g. I/O
• Elegance, Cleverness
• Energy, Power
• Ease of programming, legal issues, etc.

Analyzing Runtime

Iterative Fibonacci:
old2 = 1
old1 = 1
for (i=3; i<n; i++) {

result = old2+old1
old1 = old2
old2 = result

}

How long does this take?
A second? A minute?

Analyzing Runtime

Iterative Fibonacci:
old2 = 1
old1 = 1
for (i=3; i<n; i++) {

result = old2+old1
old1 = old2
old2 = result

}

How long does this take?
A second? A minute?

Runtime depends on n !
Therefore, we will write it as

a function of n.
More generally, it will be a

function of the input.

Analyzing Runtime

Iterative Fibonacci:
old2 = 1
old1 = 1
for (i=3; i<n; i++) {

result = old2+old1
old1 = old2
old2 = result

}

What machine do you run on?
What language?
What compiler?
How was it programmed?

Analyzing Runtime

Iterative Fibonacci:
old2 = 1
old1 = 1
for (i=3; i<n; i++) {

result = old2+old1
old1 = old2
old2 = result

}

What machine do you run on?
What language?
What compiler?
How was it programmed?

We want to analyze algorithm,
ignore these details!

Therefore, just count “basic
operations”, like arithmetic,
memory access, etc.

Analyzing Runtime

Iterative Fibonacci:
old2 = 1
old1 = 1
for (i=3; i<n; i++) {

result = old2+old1
old1 = old2
old2 = result

}

How many operations does this
take?

Analyzing Runtime

Iterative Fibonacci:
old2 = 1
old1 = 1
for (i=3; i<n; i++) {

result = old2+old1
old1 = old2
old2 = result

}

How many operations does this
take?

If we’re ignoring details, does it
make sense to be so precise?

We’ll see later how to do this
much simpler!

Run Time as a Function of Input

• Run time of iterative Fibonacci is (depending on
details of how we count and our implementation):

3+(n-3)(6)+1, simplified to 6n-14

Run Time as a Function of Input

• Run time of iterative Fibonacci is (depending on
details of how we count and our implementation):

3+(n-3)(6)+1, simplified to 6n-14
• Since we’ve abstracted away exactly how long

different operations take, and on what computer
we’re running, does it make sense to say “6n-14”
instead “6n-10” or “5n-20” or “3.14n-6.02”???

Run Time as a Function of Input

• Run time of iterative Fibonacci is (depending on
details of how we count and our implementation):

3+(n-3)(6)+1, simplified to 6n-14
• Since we’ve abstracted away exactly how long

different operations take, and on what computer
we’re running, does it make sense to say “6n-14”
instead “6n-10” or “5n-20” or “3.14n-6.02”???

What matters is its linear in n.
(We will formalize this soon.)

Run Time as a Function of Input

• What if we have lots of inputs?
– E.g., what is the run time for linear search in a list?

Run Time as a Function of Input

• What if we have lots of inputs?
– E.g., what is the run time for linear search in a list?

We could compute some complicated function
f(key,list) = …

but that will be too complicated to compare.

Run Time as a Function of Size of
Input

• What if we have lots of inputs?
– E.g., what is the run time for linear search in a list?

Instead, we usually simplify to take the run time
only in terms of the “size of” the input.
– Intuitively, this is e.g., the length of a list, etc.
– Formally, it’s the number of bits of input

This keeps our analysis simpler…

Run Time as a Function of Size of
Input

• But, which input?
– Different inputs of same size have different run times

E.g., what is run time of linear search in a list?
– If the item is the first in the list?
– If it’s the last one?
– If it’s not in the list at all?

What should we report?

Which Run Time?

There are different kinds of analysis, e.g.,
• Best Case
• Worst Case
• Average Case (Expected Time)
• Common Case
• Amortized
• etc.

Which Run Time?

There are different kinds of analysis, e.g.,
• Best Case
• Worst Case
• Average Case (Expected Time)
• Common Case
• Amortized
• etc.

Mostly
useless

Which Run Time?

There are different kinds of analysis, e.g.,
• Best Case
• Worst Case
• Average Case (Expected Time)
• Common Case
• Amortized
• etc.

Useful,
pessimistic

Which Run Time?

There are different kinds of analysis, e.g.,
• Best Case
• Worst Case
• Average Case (Expected Time)
• Common Case
• Amortized
• etc.

Useful, hard
to do right

Which Run Time?

There are different kinds of analysis, e.g.,
• Best Case
• Worst Case
• Average Case (Expected Time)
• Common Case
• Amortized
• etc.

Very useful,
but ill-defined

Which Run Time?

There are different kinds of analysis, e.g.,
• Best Case
• Worst Case
• Average Case (Expected Time)
• Common Case
• Amortized
• etc.

Useful, you’ll see
this in more

advanced courses

Multiple Inputs (or Sizes of Inputs)

• Sometime, it’s handy to have the function be in
terms of multiple inputs
– E.g., run time of counting how many times string A

appears in string B

It would make sense to write the result as a function of
both A.length and B.length

Which BigFib is faster?

• We saw an exponential time, simple recursive
Fibonacci, and a log time, more complex
Fibonacci.

Which BigFib is faster?

• We saw an exponential time, simple recursive
Fibonacci, and a log time, more complex
Fibonacci.

• At n=5, simple version is faster.
• At n=35, complex version is faster.

What’s more important?

Scalability!

• Computer science is about solving problems
people couldn’t solve before.

• Therefore, the emphasis is almost always on
solving the big versions of problems.

• (In computer systems, they always talk about
“scalability”, which is the ability of a solution to
work when things get really big.)

Asymptotic Analysis

• Asymptotic analysis is analyzing what happens to
the run time (or other performance metric) as the
input size n goes to infinity.
– The word comes from “asymptotes”, which is where

you look at the limiting behavior of a function as
something goes to infinity.

• This gives a solid mathematical way to capture the
intuition of emphasizing scalable performance.

• It also makes the analysis a lot simpler!

Interpreters, Compilers, Linkers

• Steve tells me that 221 students often find linker
errors to be mysterious.

• So, what’s a linker?

Separate Compilation

• A compiler translates a program in a high-level
language into machine language.

• A big program can be many millions of lines of
code. (e.g., Windows Vista was 50MLoC)

• Compiling something that big takes hours or days.
• The source code is in many files, and most

changes affect only a few files.
• Therefore, we compile each file separately!

Symbol Tables

• How can you compile an incomplete program?
– Header files tell you the types of the missing functions

• These are the .h file in C and C++ programs

– The object code includes a list of missing functions,
and where they are called.

– The object code also includes a list of all public
functions declared in it.

– These lists are called the “symbol table”.

Linking
• The linker puts all these files together into a single

executable file, using the symbol tables to hook up
missing functions with their definitions.
– In C and C++, the executable starts with a function

called “main”, like in Java.

	CS221: Algorithms and �Data Structures��Asymptotic Analysis
	Learning Goals�By the end of this unit, you will be able to…
	Learning Goals�By the end of this unit, you will be able to…
	Today’s Learning Goals/Outline
	Comparing Algorithms
	Comparing Algorithms
	Analyzing Runtime
	Analyzing Runtime
	Analyzing Runtime
	Analyzing Runtime
	Analyzing Runtime
	Analyzing Runtime
	Run Time as a Function of Input
	Run Time as a Function of Input
	Run Time as a Function of Input
	Run Time as a Function of Input
	Run Time as a Function of Input
	Run Time as a Function of Size of Input
	Run Time as a Function of Size of Input
	Which Run Time?
	Which Run Time?
	Which Run Time?
	Which Run Time?
	Which Run Time?
	Which Run Time?
	Multiple Inputs (or Sizes of Inputs)
	Which BigFib is faster?
	Which BigFib is faster?
	Scalability!
	Asymptotic Analysis
	Slide Number 31
	Interpreters, Compilers, Linkers
	Separate Compilation
	Symbol Tables
	Linking

