
CPSC 221:
Algorithms and Data Structures

Crash Course on Arrays

Alan J. Hu

1

Why Arrays?

• Arrays are a very low-level data structure, that
basically matches the underlying memory.

• Good: They are very efficient!
• Bad: They have unpleasant limitations.

Fact: Bits are real!

• Every bit of memory in your program is stored in
an actual physical location on a silicon chip.

• These physical memory bits are organized into
rectangular arrays, and you can quickly read/write
any bit by giving its location as a numerical
address.

• (Google DRAM “die photo” to see some pictures
of what memory really looks like.)

Die Photo of 1Mb DRAM

License: Creative Commons Attribution 3.0
Downloaded from Wikimedia Commons.
Source: http://zeptobars.ru/en/read/how-to-open-microchip-asic-what-inside

4

Consequences of Bits Being Real

• If you know the address where your data is, you
can quickly access its memory.

• If you don’t know the address, you can’t find the
data easily.

• You must work to move data. You can’t just
“squeeze in” some more bits between data you’ve
already stored.

Arrays in C++

• These are almost the same as arrays in Java.
• Declare an array, e.g.:

int x[10];

creates an array of 10 ints: x[0], x[1], …, x[9]
• Access array elements just like any variable:

x[0] = x[1]+x[2];
for (int i=0; i<10; i++) x[i] = 0;

• Lots more info in book, online, etc., e.g.,
http://www.cplusplus.com/doc/tutorial/arrays/

Arrays vs. Java’s ArrayList

• Arrays have a fixed size. They cannot grow or
shrink.

• You can’t insert things or delete things from the
middle of an array.

• Java provides an ArrayList class that does let you
do those things. That makes programming easier.

• (But Java ArrayLists are doing things behind the
scenes to make things nicer for you to program…)

Do-It-Yourself ArrayLists

 ArrayLists are nothing magical!
 (OK, the generic <type> stuff is kind of magic.)

 It’s just a class. If we fix the type of the
elements (e.g., have an ArrayList of String),
you know enough to write your own version.

 But how do you allow arrays to grow?

Real-Life Analogy: Moving Homes

 A house (or condo, apartment, etc.) has a
fixed size. What happens when your family
grows and you need more space?

Real-Life Analogy: Moving Homes

 A house (or condo, apartment, etc.) has a
fixed size. What happens when your family
grows and you need more space?

 Answer: You buy a bigger place, and then
you pack up and move all your stuff to the
new place, and get rid of your old home.

Making Your Own ArrayList

 An array has a fixed size. What happens
when your list grows and you need more
space?

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA

newA.length 8

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA 3

newA.length 8

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA 3 1

newA.length 8

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA 3 1 4

newA.length 8

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA 3 1 4 1

newA.length 8

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a 3 1 4 1

a.length 8

aCount 4

newA 3 1 4 1

newA.length 8

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a

a.length 8

aCount 4

newA 3 1 4 1

newA.length 8

(garbage collection)

Making Your Own ArrayList

 Answer: You allocate a bigger array, and
then you pack up and move all your stuff to
the new array, and get rid of your old array.

a

a.length 8

aCount 4

3 1 4 1

(garbage collection)

	CPSC 221: �Algorithms and Data Structures� Crash Course on Arrays
	Why Arrays?
	Fact: Bits are real!
	Die Photo of 1Mb DRAM
	Consequences of Bits Being Real
	Arrays in C++
	Arrays vs. Java’s ArrayList
	Do-It-Yourself ArrayLists
	Real-Life Analogy: Moving Homes
	Real-Life Analogy: Moving Homes
	Making Your Own ArrayList
	Making Your Own ArrayList
	Making Your Own ArrayList
	Making Your Own ArrayList
	Making Your Own ArrayList
	Making Your Own ArrayList
	Making Your Own ArrayList
	Making Your Own ArrayList
	Making Your Own ArrayList
	Making Your Own ArrayList

