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Why Arrays?

• Arrays are a very low-level data structure, that 
basically matches the underlying memory.

• Good:  They are very efficient!
• Bad:  They have unpleasant limitations.



Fact:  Bits are real!

• Every bit of memory in your program is stored in 
an actual physical location on a silicon chip.

• These physical memory bits are organized into 
rectangular arrays, and you can quickly read/write 
any bit by giving its location as a numerical
address.

• (Google DRAM “die photo” to see some pictures 
of what memory really looks like.)



Die Photo of 1Mb DRAM

License:  Creative Commons Attribution 3.0
Downloaded from Wikimedia Commons.
Source: http://zeptobars.ru/en/read/how-to-open-microchip-asic-what-inside
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Consequences of Bits Being Real

• If you know the address where your data is, you 
can quickly access its memory.

• If you don’t know the address, you can’t find the 
data easily.

• You must work to move data.  You can’t just 
“squeeze in” some more bits between data you’ve 
already stored.



Arrays in C++

• These are almost the same as arrays in Java.
• Declare an array, e.g.:

int x[10];

creates an array of 10 ints:  x[0], x[1], …, x[9]
• Access array elements just like any variable:

x[0] = x[1]+x[2];
for (int i=0; i<10; i++) x[i] = 0;

• Lots more info in book, online, etc., e.g.,
http://www.cplusplus.com/doc/tutorial/arrays/



Arrays vs. Java’s ArrayList

• Arrays have a fixed size. They cannot grow or 
shrink.

• You can’t insert things or delete things from the 
middle of an array.

• Java provides an ArrayList class that does let you 
do those things.  That makes programming easier.

• (But Java ArrayLists are doing things behind the 
scenes to make things nicer for you to program…)



Do-It-Yourself ArrayLists

 ArrayLists are nothing magical!
 (OK, the generic <type> stuff is kind of magic.)

 It’s just a class.  If we fix the type of the 
elements (e.g., have an ArrayList of String), 
you know enough to write your own version.

 But how do you allow arrays to grow?



Real-Life Analogy:  Moving Homes

 A house (or condo, apartment, etc.) has a 
fixed size.  What happens when your family 
grows and you need more space?



Real-Life Analogy:  Moving Homes

 A house (or condo, apartment, etc.) has a 
fixed size.  What happens when your family 
grows and you need more space?

 Answer:  You buy a bigger place, and then 
you pack up and move all your stuff to the 
new place, and get rid of your old home.



Making Your Own ArrayList

 An array has a fixed size.  What happens 
when your list grows and you need more 
space?

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.



Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4



Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA

newA.length 8



Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA 3

newA.length 8



Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA 3 1

newA.length 8



Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.

a 3 1 4 1

a.length 4

aCount 4

newA 3 1 4

newA.length 8



Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.
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Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.

a 3 1 4 1

a.length 8

aCount 4

newA 3 1 4 1

newA.length 8



Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.

a

a.length 8

aCount 4

newA 3 1 4 1

newA.length 8

(garbage collection)



Making Your Own ArrayList

 Answer:  You allocate a bigger array, and 
then you pack up and move all your stuff to 
the new array, and get rid of your old array.

a

a.length 8

aCount 4

3 1 4 1

(garbage collection)
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