
1

C++ Header Files and
Makefiles

2

Forward Declarations
• Recall that if you try to use a function before it is

declared, you will get a compiler error
• To get around this we use forward declarations

– That is, we put a copy of the function
signature at the top of a program (or before its
first use)

– E.g. int someFnc(int x, int y);
• We also need to use forward declarations when

using multiple files in our program.
• But having to add a function signature every time

can get tedious...
• Instead we can include all necessary

declarations in a header file

3

C++ Header Files
• Header files (or .hpp files) are libraries of code

that can be included in any program
– Once included, the contents are available as if you

had declared them within that very file
E.g.

test.cpp:

#include< stdio >
#include< iostream.hpp >

int x;

int main(){
 x = 5;
 cout << x;
 return 0;
}

test.hpp:

int x;

test.cpp:

#include< stdio >
#include< iostream.hpp >
#include “test.hpp”

int main(){
 x = 5;
 cout << x;
 return 0;
}

or &

NOTE: C++ header files are sometimes saved as .h files, but this should be
reserved for C programs only.

4

C++ Header Files
• The include lines that put in each program you

write include the necessary standard (and
standardized) libraries, such as for input and
output
– Including iostream, for example, allows you

to use cout, cin, etc
– The standard, compiler-supplied libraries are

always included in angle brackets, without the
“.hpp”

• Typically header files include only
declarations
– In the case of the iostream library, the

implementation of features like cout is in the
runtime support library.

5

Compiling and Linking
(reminder)

6

Makefiles
• How can we manage a larger project with

multiple files?
• A makefile!

– Lists the sources files that make up your
current project, and any UNIX commands
used to compile the programs

• You can use nearly any text editor to
create a makefile

• Once written it is called using “make”
– This will run any makefile called “Makefile” or

“makefile”

7

Makefiles
• Suppose you have a program called “prog.cpp”

and a header file called “prog.hpp” and you
want to produce an executable called “prog”.

• Consider the first line:
– To the left of the colon (prog) is the target
– To the right is the dependency (prog.cpp)
– That is, the target file depends on prog.cpp
– A target can have any number of

dependencies

Makefile:

prog: prog.cpp prog.hpp
 g++ -Wall -g -o prog prog.cpp

8

Makefiles
• When running, make will check the timestamp on

any dependent files.
– If it is changed, it will re-compile. If not, make

will tell you that it is up to date.

• Consider the second line:
– This is the UNIX command used to compile
– This line must be indented with a tab

• (Be careful when cutting & pasting!)
• All of this together is a rule.

– A makefile can have one or more rules.

Makefile:

prog: prog.cpp prog.hpp
 g++ -Wall -g -o prog prog.cpp

9

Makefiles

• The -g enables debugging information
• The -Wall enables all warning messages
• The -o indicates the executable file name

– Be sure to include this or you could
accidentally overwrite your source file!

– E.g. this is wrong!
g++ -Wall -g -o prog.cpp

Makefile:

prog: prog.cpp prog.hpp
 g++ -Wall -g -o prog prog.cpp

10

More complicated Makefiles
• In the example we just looked at, it was probably

too simple to bother with make.
• Let’s look at a more complicated program (feel

free to use this as a template)

Makefile:

firstprog: prog.o novowels.o columns.o
g++ -Wall -g -o prog prog.o novowels.o columns.o

prog.o: prog.cpp prog.hpp
g++ -Wall -g -c prog.cpp

novowels.o: novowels.cpp
g++ -Wall -g -c novowels.cpp

columns.o: columns.cpp
g++ -Wall -g -c columns.cpp

