
C++ Primer (Last updated: May 2009) 1

C++ Primer
(Based upon Objects, Abstraction, Data

Sturctures and Design Using C++)

C++ Primer (Last updated: May 2009) 2

Primer Chapter Outline

• The C++ Environment

• Preprocessor Directives and Macros

• C++ Control Statements

• Primitive Data Types and Class Data Types

• Objects, Pointers, and References

• Functions

• Arrays and C Strings

• The string Class

• Input/Output Using Streams

C++ Primer (Last updated: May 2009) 3

Moving from Java to C++...

“Java is C++ without the guns, knives, and clubs.”
- James Gosling, Creator of Java

Originally there was C, developed from 1969-1973 in parallel
with Unix

C is a small language used to write low-level software such as
device drivers, OS kernels (e.g., Linux), and compilers for
languages such as Java. It is a subset of C++

C++ was developed from 1983-1985 as an extension of C to
include object-oriented programming (OOP).

Java is based heavily on C++
C++ Primer (Last updated: May 2009) 4

Moving from Java to C++...
Java C++

char Unicode 8-bit number (possibly unsigned)

Arrays
A class with different properties (e.g.

has a length member)
No length! Doesn’t check for out of

bounds

struct No Yes

>>> Yes No

:: No
Yes, after classes. Member functions can

be implemented outside of classes

Uses packages Uses namespaces

if condition boolean only int, char, bool

classes everything! global declarations and functions

object
construction

always via new
class Point { ... };

Point p(2.1, 1.5), q;

garbage
collection

automatic!
must create destructors and delete

objects created by new

C++ Primer (Last updated: May 2009) 5

Moving from Java to C++...

• Note:

– Within conditionals (if and loop guards), C++ allows
integer expressions, where 0 evaluates to FALSE,
and non-0 evaluates to TRUE)

– E.g. if(someInt != 0)

– This is poor style as it is unclear:
– if(someInt)

– Common error(!):
int a = 0, b = 1;

if(a = b) { ... }

C++ Primer (Last updated: May 2009) 6

Moving from Java to C++...

C++ Primer (Last updated: May 2009) 7

Compiling and Linking

• A C++ program consists of one or more source
files.

• Source files contain function and class
declarations and definitions.
– Files that contain only declarations are incorporated

into the source files that need them when they are
compiled.

• Thus they are called include files.

– Files that contain definitions are translated by the
compiler into an intermediate form called object files.

– One or more object files are combined with to form
the executable file by the linker.

C++ Primer (Last updated: May 2009) 8

Compiling and Linking

C++ Primer (Last updated: May 2009) 9

A Simple Program

#include <iostream>

#include <string>

using namespace std;

int main()

{

 cout << "Enter your name\n";

 string name;

 getline(cin, name);

 cout << "Hello " << name

 << " - welcome to C++\n";

 return 0;

}

C++ Primer (Last updated: May 2009) 10

Unix & C++
• Unix commands are entered on the command line, after the “>” symbol.

Common Unix commands include:

Listing files: ls –l

Listing your current (working) directory: pwd

Copying and removing files:
 cp filename secondFileName
 rm filename2

Renaming (moving) files:
 mv filename myNewFileName

Directory operations:
 cd directoryName (change to subdir)

mkdir directoryName (create directory)
 rmdir directoryName (remove directory)

There are many introductory references on Unix, both online and in print. Please
refer to those for more information.

C++ Primer (Last updated: May 2009) 11

Compile, Link & Run:
g++ <options> <files>

Useful options:

-o <executable name> (default a.out)

-Wall (turn on all warning messages)

Type “man g++” or “man gcc” to see the online manual page

for GNU C++

E.g. g++ -Wall myProgram.cpp will produce a.out

which can be run with./a.out (or just a.out, depending on

your environment settings)

Alternatively: g++ -Wall -o myProg myProgram.cpp

will produce myProg which can be run with./myProg

C++ Primer (Last updated: May 2009) 12

The using Statement

• The line
using namespace std;

 tells the compiler to make all names in the
predefined namespace std available.

• The C++ standard library is defined within this
namespace.

• Incorporating the statement
using namespace std;

 is an easy way to get access to the standard
library.
– But, it can lead to complications in larger programs.

C++ Primer (Last updated: May 2009) 13

The using declaration

• Instead of incorporating all names from a
namespace into your program
– It is a better approach to incorporate only the

names you are going to use.

– This is done with individual using declarations.
using std::cin;

using std::cout;

using std::string;

using std::getline;

C++ Primer (Last updated: May 2009) 14

The function main

• Each program must include a main
function.

• This function is defined as follows:
int main()

{

 …

}

 where the code for the function appears
between the { and the }.

C++ Primer (Last updated: May 2009) 15

The stream insertion operator

• The statement:
cout << "Enter your name\n";

 inserts the string into the standard output
stream.

– The result is that it is displayed on the
console.

C++ Primer (Last updated: May 2009) 16

The getline function

• The statement
getline(cin, name);

 reads the characters from the input stream
(keyboard) until a new line character is
entered.

– The resulting string is stored in the string name.

C++ Primer (Last updated: May 2009) 17

The insertion operator again

• The statement:
cout << "Hello " << name << " – welcome to C++\n";

 outputs three strings to the console:
Hello

the entered line

- welcome to C++

• If the characters John Doe were entered,
the result would be

Hello John Doe - welcome to C++

C++ Primer (Last updated: May 2009) 18

Splicing Long Lines

• If a line ends with the character \ (or the

trigraph sequence ??/)

– Then the following line is appended to this line
and the result is considered a single line.

C++ Primer (Last updated: May 2009) 19

Comments

• Same as Java (minus JavaDOC)

C++ Primer (Last updated: May 2009) 20

Function Definition

• Form:
return-type function-name(parameter list) {

 function body

}

• The parameter list is either empty, or a
comma-separated list of the form:

type-name parameter-name

• Function definitions are generally placed in
their own file, or related function definitions
may be grouped into a single file.

C++ Primer (Last updated: May 2009) 21

Function Declaration

• To use a function within a source file
before its full definition it must be declared
as a protoype.

• Form:
return-type function-name(parameter list);

 Within the parameter list, only the types of
the parameters are required.

char min_char(char, char);

C++ Primer (Last updated: May 2009) 22

Common Errors:
syntax error
 (look for a missing semi-colon)

undeclared function
(look for a misspelled keyword or a missing prototype)

unterminated string
(look for a missing quote)

undeclared identifier
(declare the identifier’s type)

parse error
(probably missing a brace (curly bracket): { or }

C++ Primer (Last updated: May 2009) 23

Arrays

• An array is an object.

• The elements of an array are all of the
same type.

• The elements of an array are accessed by
an index applied to the subscript operator.

array-name[index]

C++ Primer (Last updated: May 2009) 24

Declaring an array

• Form:
type-name array-name[size];

type-name array-name[] = {initialization list};

• Examples:
int scores[5];

string names[] = {"Sally", "Jill", "Hal", "Rick"};

C++ Primer (Last updated: May 2009) 25

Using braces and indentation

• There are several coding styles.

• The one used in this text is:
– Place a { on the same line as the condition for

an if, while, or for statement.

– Indent each line of the controlled compound
statement.

– Place the closing } on its own line, indented at
the same level as the if, while, or for.

– For else conditions, use the form:

} else {

C++ Primer (Last updated: May 2009) 26

String Constants

• The form "sequence of characters"

 where sequence of characters does not

include ‘"’ is called a string constant.

• Note escape sequences may appear in
the sequence of characters.

• String constants are stored in the
computer as arrays of characters followed

by a '\0'.

C++ Primer (Last updated: May 2009) 27

Increment and Decrement

• Prefix:
++x

x is replaced by x+1, and the value is x+1

 --x

x is replaced by x-1, and the value is x-1

• Postfix
x++

x is replaced by x+1, but the value is x

x--

x is replaced by x-1, but the value is x

C++ Primer (Last updated: May 2009) 28

Prefix and Postfix Increment (2)

• Assume that i has the value 3.

• Then
z = ++i;

 would result in both z and i having the
value 4.

• But
z = i++;

 would result in z having the value 3 and i
the value 4.

C++ Primer (Last updated: May 2009) 29

Automatic Type Conversion

• If the operands are of different types, the
following rules apply:

– If either operand is long double, convert the other to

long double.

– If either operand is double, convert the other to

double.

– If either operand is float, convert the other to float.

– Convert char and short to int

– If either operand is long, convert the other to long.

C++ Primer (Last updated: May 2009) 30

Explicit Type Conversion

• An expression of one primitive type can be
converted to another primitive type using the
form:

new-type(expression)

• Example
– If i is an int and y a double

i = int(y);

 will convert y to an int and store int into i.

– The statement:
i = y;

 will do the same thing, but may result in a warning
message.

C++ Primer (Last updated: May 2009) 31

The Conditional Operator

• Form:

boolean-expression ? value1 : value2

 If the boolean-exression is true, then the
result is value1 otherwise it is value2.

• In most cases the same effect can be
achieved using the if statement.

C++ Primer (Last updated: May 2009) 32

Objects, Pointers, References

• An object is an area of computer memory
containing data of some kind.

• The kind of data is determined by the object’s
type.

• A type may be either

– A primitive type.

– A user-defined (class) type.

• For class types

– Objects may be contained within other objects.

C++ Primer (Last updated: May 2009) 33

Object Declaration

• Form:
type-name name;

type-name name = initial-value;

type-name name(argument-list);

• Example
int i;

string s = "Hello";

double x = 5.5;

double y(6.7);

point p(x, y);

C++ Primer (Last updated: May 2009) 34

Object Lifetimes

• Objects are created when they are declared.

• Objects declared within the scope of a function
are destroyed when the function is exited.

• Objects declared in a block (between { and }) are
destroyed when the block is exited.

• Objects declared outside the scope of a function
(called global objects)
– Are created before main is called

– Are destroyed after main exits

• Objects created using the new operator must be
destroyed using the delete operator.

C++ Primer (Last updated: May 2009) 35

Pointers

• A pointer is an object that refers to another
object.

• A pointer object contains the memory
address of the object it points to.

• Example:
double x = 5.1234;

double *px = &x;

C++ Primer (Last updated: May 2009) 36

Pointer Declaration

• Form

type-name* pointer-variable;

type-name* pointer-variable = &object;

type-name *pointer-variable;

type-name *pointer-variable = &object;

C++ Primer (Last updated: May 2009) 37

The dereferencing Operator

• The unary operator * is the dereferencing
operator.

– It converts a pointer to the value pointed to.

• Example:
*px = 1.2345;

 Results in

C++ Primer (Last updated: May 2009) 38

Multiple Variables in one
Declaration

• The declaration:
double* px, py;

 declares that px is a pointer-to-double, but
py is a double.

• To declare multiple pointer variables in one
declaration:

double *px, *py;

C++ Primer (Last updated: May 2009) 39

The NULL pointer

• The null pointer is a pointer value that points to nothing.

• Internally the value of the null pointer is implementation
defined.

• The literal constant 0 is converted to a null pointer.

• Null pointers are converted to false when used in
boolean expressions, and non-null pointers are
converted to true.

• The macro NULL is defined in <cstddef> as:
#define NULL 0

• Future versions of C++ will have a reserved-word for the
null pointer literal.

C++ Primer (Last updated: May 2009) 40

The new operator

• Pointers are not generally initialized using
the address-of operator.

• The new operator will create an instance
of an object and return the address.

double* px = new double;

*px = 5.1234;

C++ Primer (Last updated: May 2009) 41

The delete operator

• All objects that are dynamically created
using the new operator must be destroyed
using the delete operator.

delete pointer-variable;

• Note that pointer-variable must have been
initialized by the new operator.

• Attempts to use delete on some other
pointer value will probably cause a run-
time error.

C++ Primer (Last updated: May 2009) 42

Call by reference vs. value

• By default, functions are called by value.
– A copy of the arguments are made and stored into

objects corresponding to the parameters.

– Any changes made to the parameter values do not
affect the original argument objects.

• If a parameter is declared to be a reference type,
then:
– The parameter variable is bound to the argument

value.

– Any change made to the parameter value is made to
the original argument object.

C++ Primer (Last updated: May 2009) 43

Example of call by reference

void swap(int& x, int& y) {

 int temp = x;

 x = y;

 y = temp;

}

• The statement:
swap(i, j);

 will result in the values stored in i and j to
be exchanged.

C++ Primer (Last updated: May 2009) 44

Call by const reference

• Class types may occupy several storage
locations in memory.

• Passing a class type object by value is
inefficient.

• By declaring the parameter to be a const
reference, function can access the value
of the argument, but not change it.

C++ Primer (Last updated: May 2009) 45

Example of const reference

int count_occurences(char c, const string& s) {

 int count = 0;

 for (int i = 0; i < s.size(); i++) {

 if (c == s[i]) count++;

 }

 return count;

}

C++ Primer (Last updated: May 2009) 46

Pointers and Arrays

• C++ performs automatic conversion between array types and
pointer types.

• The expression:
students[0]

 and
*students

 are equivalent.

• The expression:
a[i]

 is equivalent to
*(a + i)

 and
&a[i]

 to
(a + i)

C++ Primer (Last updated: May 2009) 47

Dynamically Allocated Arrays

• The new[] operator can be used to allocate an
array.

• Form:
new type-name[size]

! will allocate space for size objects of type type-
name are return a pointer to the first object.

• A declaration of the form:
pointer-variable = new type-name[size];

 will initialize pointer-variable to point to the
dynamically allocated array.
– The pointer-variable can then be used like an array

variable.

C++ Primer (Last updated: May 2009) 48

The delete[] operator

• All dynamically allocated arrays must be
destroyed using the delete[] operator.

• Form

delete[] pointer-variable;

 Note that pointer-variable must have been

initialized using the new[] operator.

C++ Primer (Last updated: May 2009) 49

Arrays as function arguments

• Arrays are passed as pointers to functions.

• Function parameters may be declared either as
pointers or arrays,
– but the two are equivalent.

• Example:
int find(int x[], int n, int target);
int find(int* x, int n, int target);

 are equivalent.

• You can call this funcion with either an array or a
pointer:

int loc = find(scores, 10, 50);
int loc = find(scores + 5, 5, 50);

C++ Primer (Last updated: May 2009) 50

C-Strings

• The C programming language uses an array of
char values terminated with the null character

('\0').

• Thus the constant
"hello"

 is stored as:

h e l l o \0

C++ Primer (Last updated: May 2009) 51

The string class

• The string class is defined in the header
<string>

• Using the string class allows us to manipulate
string objects similar to objects of the primitive
types.

• Example:
string s1, s2;

s1 = "hello";

s2 = s1 + " world";

C++ Primer (Last updated: May 2009) 52

Input/Output Streams

• An input stream is a sequence of
characters.
– They may be from the keyboard, a file, or

some other data source (e.g. a network
socket).

• An output stream is a sequence of
characters.
– They may be written to the console, a file, or

some other data source (e.g. a network
socket).

C++ Primer (Last updated: May 2009) 53

The <iostream> header

• The header <iostream> declares the following
pre-defined streams as global variables:

istream cin; //input from standard input

ostream cout; //output to standard output

ostream cerr; //output to the standard error

• Standard input is generally from the keyboard,
but may be assigned to be from a file.

• Standard output and standard error are
generally to the console, but may be assigned to
a file.

C++ Primer (Last updated: May 2009) 54

The istream class
• The istream class performs input from input

streams.

• It defines the extraction operator (>>) for the
primitive types and the string class.

C++ Primer (Last updated: May 2009) 55

Status Reporting Functions

C++ Primer (Last updated: May 2009) 56

Reading all input from a stream

int n = 0;

int sum = 0;

int i;

while (cin >> i) {

 n++;

 sum += i;

}

if (cin.eof()) {

 cout << "End of file reached\n";

 cout << "You entered " << n << numbers\n";

 cout << "The sum is " << sum << endl;

} else if (cin.bad()) {

 cout << "Unrecoverable i/o error\n";

} else {

 cout << "The last entry was not a valid number\n";

}

C++ Primer (Last updated: May 2009) 57

The ostream class

• The ostream class provides output to an output stream.

• It defines the insertion operator (<<) for primitive types
and the string class.

C++ Primer (Last updated: May 2009) 58

Formatting Manipulators in <iostream>

C++ Primer (Last updated: May 2009) 59

I/O Manipulators in <iomanip>

C++ Primer (Last updated: May 2009) 60

Floating-point output format
• The default floating-point format is called general.

• If you set either fixed or scientific, then to get back to general format
you must use the mainiplator call:

resetiosflage(ios_base::fixed | ios_base::scientific)

C++ Primer (Last updated: May 2009) 61

File Streams

• The header <fstream> defines the classes

ifstream An istream associated with a file

ofstream An ostream associated with a file

C++ Primer (Last updated: May 2009) 62

Constructors and the open function

C++ Primer (Last updated: May 2009) 63

Openmode Flags

C++ Primer (Last updated: May 2009) 64

String Streams

• Defined in the header <sstream>

• Associates an istream or ostream with a string object.

C++ Primer (Last updated: May 2009) 65

Using an istringstream

• Assume that the string person_data
contains:

Doe, John 5/15/65

• We want to split this into family_name,
given_name, month, day, and year.

istringstream in(person_data);

in >> family_name >> given_name;

in >> month; // Read the month

in >> c; // Skip the / character

in >> day; // Read the day

in >> c; // Skip the / character

in >> year; // Read the year

C++ Primer (Last updated: May 2009) 66

Using an ostringstream

• We want to construct the string
person_data from the component values.

ostringstream out;

out << family_name << ", " << given_name << " "

 << month << "/" << day << "/" << year;

string person_data = out.str();

C++ Primer (Last updated: May 2009) 67

The #include Directive

• The first two lines:
#include <iostream>

#include <string>

! incorporate the declarations of the iostream and
string libraries into the source code.

• If your program is going to use a member of the
standard library, the appropriate header file must
be included at the beginning of the source code
file.

C++ Primer (Last updated: May 2009) 68

Conditional Compilation

• Forms:
#ifdef macro-name

code to be compiled if macro-name is defined

#else

code to be compiled if macro-name is not defined

#endif

or
#ifndef macro-name

code to be compiled if macro-name is not defined

#else

code to be compiled if macro-name is defined

#endif

C++ Primer (Last updated: May 2009) 69

Using Conditional Compilation

• Some functions are defined to be used by both
C and C++ programs.

• If a C/C++ compiler is compiling a program as a
C++ program, then the macro __cplusplus is
defined. (Note the two _ chars).

• Then the function would be declared as follows:
#ifdef __cplusplus

extern "C" {
#endif

function declaration
#ifdef __cplusplus
}

#endif

C++ Primer (Last updated: May 2009) 70

Preventing Multiple Includes

• A header file may be included by another header file.

• The user of the header file may not know this and may
include a duplicate.

• This may lead to a compile error.

• To prevent this, each include file should be structured as
follows:

#ifndef unique-name

#define unique-name

…

#endif

• Generally unique-name is related to the file name.
– Example myfile.h would use the name MYFILE_H_

C++ Primer (Last updated: May 2009) 71

More on #include directive

• The #include directive has two forms:
#include <header>

– is reserved for standard library headers.

#include "file-name"

– is used for user-defined include files.

• The convention is that user-defined
include files will end with the extension .h.

• Note that the standard library headers do
not end with .h.

