
CPSC 221: Algorithms and Data Structures
Assignment #1, due Wednesday, 2014 May 28 at 17:00 (5pm) PST

Submission Instructions

Type or write your assignment on clean sheets of paper with question numbers prominently labeled. Answers that
are difficult to read or locate may lose marks. We recommend working problems on a draft copy then writing a
separate final copy to submit.

Each submission should include the names and student IDs of the authors at the top of each page. (You are
strongly encouraged to work in pairs, but may not work in groups of three or more. Each pair submits a single
copy of the assignment.) On your first page, also sign the statement “I have read and complied with the CPSC 221
2014S1 academic conduct policy as posted on the CPSC 221 course website.” (See: http://www.ugrad.cs.ubc.

ca/~cs221/2014S1/syllabus.shtml#conduct.) In keeping with the policy, you should also acknowledge on your
first page any collaborators or resources that helped you with the assignment. Finally, staple your submissions pages
together! We are not responsible for lost pages from unstapled submissions.

Submit your assignment to Box 31, in room ICCS X235. Late submissions are not accepted.

Questions

[10] 1. Stacks.

You are given a stack of integers. The stack has been implemented using an array. Assuming that the stack’s
initial state is given below,

(a) Draw the stack after each push operation has completed.

5 2 8 4
0 1 2 3 4 5 6 7 8 9

Solution:

push(5)

5 2 5
0 1 2 3 4 5 6 7 8 9

push(6)

5 2 5 6
0 1 2 3 4 5 6 7 8 9

push(24)

5 2 5 6 24
0 1 2 3 4 5 6 7 8 9

push(7)

5 2 7
0 1 2 3 4 5 6 7 8 9

(b) If every time top is called, we also write down the integer value obtained, what list of numbers do we get?

Operations: pop(), top(), pop(), push(5), push(6), top(), push(24), top(), pop(), pop(), pop(),
top(), push(7), top().

Solution: 8, 6, 24, 2, 7.

1

http://www.ugrad.cs.ubc.ca/~cs221/2014S1/syllabus.shtml#conduct
http://www.ugrad.cs.ubc.ca/~cs221/2014S1/syllabus.shtml#conduct


[15] 2. Queues.

Consider the following C++ linked list implementation of a queue of integers (int).

class Queue

{
struct node {

int value;

node *next;

};
node *head = NULL, *tail = NULL;

void enqueue(int n)

{
node *a = new node();

a->value = n;

if (head==NULL)

tail = a;

else

head->next = a;

head = a;

}

bool isEmpty()

{
return head==NULL;

}

int dequeue()

{
if (isEmpty())

throw "Nothing to dequeue.";

node *temp = tail->next;

int n = tail->next;

if (head==tail)

head = NULL;

delete tail;

tail = temp;

return n;

}
};

The diagram below shows the state of memory just before some code executes:

courses

Queue

head

tail

node

value

310

next

node

value

320

next
NULL

Two SUCCESSIVE calls are made on the object pointed to by the pointer courses: courses->dequeue()

and courses->enqueue(221). For each operation, draw models representing the state of memory at the
specified times.

Solution:

(a) For the call to courses->dequeue(), draw the memory after the lines

i. node *temp = tail->next;

courses temp

Queue

head

tail

node

value

310

next

node

value

320

next
NULL

ii. delete tail;

courses temp

Queue

head

tail

node

value

320

next
NULL

iii. tail = temp;

courses temp

Queue

head

tail

node

value

320

next
NULL

2



(b) For the call to courses->enqueue(221), draw the memory after the lines

i. node *a = new node();
courses a

Queue

head

tail

node

value

320

next
NULL

node

value

0

next
NULL

ii. a->value = n;
courses a

Queue

head

tail

node

value

320

next
NULL

node

value

221

next
NULL

iii. head = a;
courses a

Queue

head

tail

node

value

320

next

node

value

221

next
NULL

[20] 3. Simplifying to Asymptotic Bounds.

For each of the following definitions of T (n), give the big-Θ bound, as simplified as you can. You do not need
to prove your result. However, to get partial credit for any minor mistakes, you should show how you arrived
at your answer.

(a) Example: T (n) = 42, answer Θ(1).

(b) T (n) = n3 + n2 + n
Solution: T (n) ∈ Θ(n3) since we can discard lower order terms of polynomials.

(c) T (n) = (n + 4)(n + 2)− n2

Solution: T (n) = (n + 4)(n + 2)− n2 = n2 + 6n + 8− n2 = 6n + 8 so T (n) ∈ Θ(n) since we can discard
lower order terms of polynomials.

(d) T (n) = n logn
2n + n

Solution: T (n) = n logn
2n + n = 1

2 log n + n so T (n) ∈ Θ(n) since asymptotically n > log n.

(e) T (n) =
∑n−2

i=0 (3i + 2)

Solution: T (n) =
∑n−2

i=0 (3i + 2) = 3
∑n−2

i=0 i + 2(n − 1) = 3 · (n−2)(n−1)2 + 2n − 2 = 3
2n

2 − 5
2n + 1 so

T (n) ∈ Θ(n2) since we can discard lower order terms of polynomials and constants.

(f) T (n) =
∑n−2

i=0 (3i + 2)2

Solution: T (n) =
∑n−2

i=0 (3i + 2)2 = 3
∑n−2

i=0 (9i2 + 12i + 4) = 9
∑n−2

i=0 i2 + 12
∑n−2

i=0 i + 4(n − 1) =

9 · (n−2)(n−1)(2(n−2)+1)
6 + 12 · (n−2)(n−1)2 + 4(n − 1). Simplifying out yields a polynomial of degree 3, so

T (n) ∈ Θ(n3) since we can discard lower order terms of polynomials and constants.

(g) T (0) = 1 and T (n) = 2T (n− 1) + 2.
Solution: Notice that T (n) = 2T (n − 1) + 2 = 22T (n − 2) + 22 + 2 = 23T (n − 3) + 23 + 22 + 2 =
· · · = 2nT (0) + (2n + 2n−1 + · · · + 22 + 2). Then, 2n + 2n−1 + · · · + 22 + 2 is a geometric series, so
2n + 2n−1 + · · ·+ 22 + 2 = 2(2n−1 + · · ·+ 21 + 20) = 2(2n − 1). Putting everything together,

T (n) = 2nT (0) + (2n + 2n−1 + · · ·+ 22 + 2) = 2n + 2(2n − 1) = 3 · 2n − 2.

Then, T (n) ∈ Θ(2n).

[15] 4. Comparing Asymptotic Behaviours.

(a) Let f(n) = 82lgn and g(n) = 3n7 + 7n.

i. Asymptotically, does f(n) or g(n) grow faster? For this question, you may find it useful to use loga-
rithm identities. Show your work for partial marks.

Solution: Using some logarithm identites, 82lgn = (23)2lgn = 26lgn = 2lg (n6) = n6. Then, for large
n, n6 < n7 < 3n7 + 7n, so f(n) < g(n). This means that g(n) grows faster asymptotically.

ii. Fill in the following blanks:

A. f(n) is big- of g(n). Solution: f(n) is big-O of g(n).

3



B. g(n) is big- of f(n). Solution: g(n) is big-Ω of f(n).

(b) Suppose a function h(n) describing the runtime of one program is big-O of another function k(n) describ-
ing the runtime of another program, can we say that at some point (for some sufficiently large input size
n) the second program will take longer than the first? You may use examples in your answer.

Solution: No, we cannot say this. Consider the following counterexample: let h(n) = n and k(n) = n
2 .

h(n) is big-O of k(n) since limn→∞
n

n/2 = 2 is less than infinity. However, h(n) > k(n) for any positive n

you choose, no matter how large. (1 > 1
2 =⇒ n > n

2 provided n > 0).

[25] 5. Analyzing Runtime and Some Proofs.

Consider the following two functions foo and bar implemented in C++ below.

void foo(int n)

{
for (int i=0; i<n; ++i)

{
if (i%2==0)

cout << "foo" << endl;

for (int j=0; j<n; ++j)

cout << j << endl;

}
}

void bar(int n)

{
for (int i=0; i*i<n; ++i)

{
foo(n);

for (int j=i; j<n; ++j)

cout << j << endl;

}
}

(a) Find an equation for the time complexity of each of the functions foo and bar. In your answer, you may
assume that cout operations all take the same amount of time, and label this time with the constant c.

Solution: Let the function describing the runtime of foo be T1(n) and the function describing the runtime
of bar be T2(n).

• When looking at foo, we can tell that the outer loop runs n times, so T1(n) will be the product of n
and the runtime of the contents of the outer for loop. The if statement is true for roughly half of
the time (when i is even), so on average it takes c

2 time to execute. The inner for loop runs n times,
so it takes cn time. Putting everything together, we get T1(n) = n

(
c
2 + cn

)
= cn2 + c

2n.

• When looking at bar, things are not so easy. Since the for loop ends as soon as i*i is larger than or
equal to n, we can estimate that the loop ends roughly after i2 = n → i =

√
n. From this estimate,

we know the outer loop runs
√
n times.

Then, the total time spent executing foo(n) is the product of the number of times the outer loop
runs and the time it takes to execute foo, so

√
n · T1(n) =

√
n ·
(
cn2 + c

2n
)

= cn2.5 + c
2n

1.5.

Now, for the inner for loop. This is probably the trickiest part of the homework assignment. Drawing
a picture (analogous to the one in lecture 2 on slide 61), we get something that looks like the drawing
below.

@
@
@
@
@
@
@@

@@

@@

@@

@@

@@︸ ︷︷ ︸√
n︸ ︷︷ ︸
n

n



Here, the i index is horizontal and the j index is vertical. We
already know that the i index runs from 0 to

√
n, so we can cut

off the image there. Next, since the inner loop is from i to n, as i
increases, the number of values for j, n− i, decreases. This is the
downward sloping line. Then, the total time spent inside both of
these loops is the area inside the bold line (the trapezoid) times c.
The figure’s area is the difference of two triangles

1

2
n2 − 1

2
(n−

√
n)2 = n1.5 − 1

2
n

(Remember we still need to multiply by c). Adding this to the
time spent in foo(n), we get

T2(n) =
(
cn2.5 +

c

2
n1.5

)
+ c

(
n1.5 − 1

2
n

)
= cn2.5 +

3c

2
n1.5 − c

2
n

4



(b) Prove formally using the definition of big-O that foo has a runtime that is O(n3).

Solution: Using the limit definition of big-O, we need to verify that limn→∞
T1(n)
n3 is equal to some finite

number.

lim
n→∞

T1(n)

n3
= lim

n→∞

cn2 + c
2n

n3
= 0

The limit goes to zero since the largest power of n in the denominator is greater than the one in the
numerator (3 > 2). By the definition of big-O, T1(n) ∈ O(n3).

(c) Prove formally using the definition of big-Ω that foo has a runtime that is not Ω(n2.5).

Solution: Using the limit definition of big-Ω, we need to verify that limn→∞
T1(n)
n2.5 is not greater than 0.

lim
n→∞

T1(n)

n2.5
= lim

n→∞

cn2 + c
2n

n2.5
= 0

The limit goes to zero since the largest power of n in the denominator is greater than the one in the
numerator (3 > 2.5). By the definition of big-Ω, T1(n) 6∈ Ω(n2.5).

(d) Prove formally using the definition of big-Θ that bar has a runtime that is Θ(n2.5).

Solution: Using the limit definition of big-Θ, we need to verify that limn→∞
T2(n)
n2.5 is greater than 0 but

less than infinity.

lim
n→∞

T2(n)

n2.5
= lim

n→∞

cn2.5 + 3c
2 n

1.5 − c
2n

n2.5
= c

The limit goes to c since the largest power of n in the denominator is equal to the one in the numerator,
and discounting the other terms, these cancel out to leave c. However, c is neither 0 nor ∞ so, by the
definition of big-Θ, T2(n) ∈ Θ(n2.5).

[15] 6. Proof Practice.

Suppose you have two positive functions f(n) and g(n) where f(n) ∈ O(h(n)) and g(n) ∈ O(k(n)). If
k(n) ∈ O(h(n)), show that f(n)+g(n) ∈ O(h(n)). (Hint: try combining the limits you get from f(n) ∈ O(h(n)),
g(n) ∈ O(k(n)), and k(n) ∈ O(h(n))).

Solution:

Proof. By definition of big-O, there exist numbers c1, c2, and c3 such that

f(n) ∈ O(h(n)) ↔ lim
n→∞

f(n)

h(n)
= c1,

g(n) ∈ O(k(n)) ↔ lim
n→∞

g(n)

k(n)
= c2,

k(n) ∈ O(h(n)) ↔ lim
n→∞

k(n)

h(n)
= c3.

Then, it follows that we have

lim
n→∞

f(n) + g(n)

h(n)
= lim

n→∞

[
f(n)

h(n)
+

g(n)

k(n)
· k(n)

h(n)

]
=

(
lim

n→∞

f(n)

h(n)

)
+

(
lim
n→∞

g(n)

k(n)

)
·
(

lim
n→∞

k(n)

h(n)

)
= c1 + c2c3.

We are permitted to split the limit since each of the component limits converges. It follows that, since c1 + c2c3
is finite, f(n) + g(n) ∈ O(h(n)).

5


