Random String Permutations
(reigniouS mPRrtmnsdtan aot)

Problem: Permute a string so that every reordering of the string is equally likely. You may use a function `randrange(n)`, which selects a number \([0, n)\) uniformly at random.

Random String Permutations
Understanding the Problem

A string is:
- an empty string **or** a letter plus the rest of the string.

We want every letter to have an equal chance to end up first. We want all permutations of the rest of the string to be equally likely to go after.

And.. there’s only one empty string.

(Tests: tricky, but result should always have same letters as orginal.)

Random String Permutations
Algorithm

PERMUTE(s):
- if s is empty, just return s
- else:
 - use randRange to choose a random first letter
 - permute the rest of the string (minus that random letter)
 - return a string that starts with the random letter and continues with the permuted rest of the string

Random String Permutations
Converting Algorithm to Code

```python
PERMUTE(s):
    if s is empty, just return s
    else:
        choose random letter
        permute the rest
        return random letter + rest
```
Thinking Recursively

DO NOT START WITH CODE. Write the *story* of the problem, including the data definition!

Define the problem: What should be done given a particular input?

Solve some example cases by hand.

Identify and solve the (usually simple) base case(s).

Figure out how to break the complex cases down in terms of any smaller case(s). For the smaller cases, call the function recursively and assume it works. Do not think about how!

Implementing Recursion (REMINDER!)

Once you have all that, write out your solution in comments (a “template”). Then fill out the code and test.

(Should be easy… if it’s hard, maybe you’re not assuming your recursive call works!)

Recursion Example: Fibs (SKIPPING in class)

Problem: Calculate the \(n \)th Fibonacci number, from the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

First two numbers are 1; each succeeding number is the sum of the previous two numbers:

\[
\text{fib}_n = \begin{cases}
1 & \text{if } n = 1 \\
1 & \text{if } n = 2 \\
\text{fib}_{n-1} + \text{fib}_{n-2} & \text{if } n \geq 3
\end{cases}
\]

Fibs, Worked, First Pass (SKIPPING in class)

Problem: Calculate the \(n \)th Fibonacci number, from the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

\[
fib_n = \begin{cases}
1 & \text{if } n = 1 \\
1 & \text{if } n = 2 \\
\text{fib}_{n-1} + \text{fib}_{n-2} & \text{if } n \geq 3
\end{cases}
\]

```cpp
int fib(int n) {
    if (n <= 2) return 1;
    else        return fib(n-1) + fib(n-2);
}
```

Today’s Outline

- Thinking Recursively
- Recursion Examples
- Analyzing Recursion: Induction and Recurrences
- Analyzing Iteration: Loop Invariants
- Mythbusters: “Recursion’s not as efficient as iteration”??
 - Recursion and the Call Stack
 - Iteration and Explicit Stacks
 - Tail Recursion (but our KW text is wrong about this!)

Induction and Recursion, Twins Separated at Birth?

Base case

Prove for some small value(s).

Base case

Calculate for some small value(s).

Inductive Step

Break a larger case down into smaller ones that we assume work (the Induction Hypothesis).

Otherwise, break the problem down in terms of itself (smaller versions) and then call this function to solve the smaller versions, assuming it will work.
Proving a Recursive Function Correct with Induction is EASY

Just follow your code’s lead and use induction.

Your base case(s)? Your code’s base case(s).

How do you break down the inductive step? However your code breaks the problem down into smaller cases.

What do you assume? That the recursive calls just work (for smaller input sizes as parameters, which better be how your recursive code works!).

Reminder: Factorial

One definition...

\[n! = 1 \cdot 2 \cdot \cdots \cdot n \]

which is not very useful for recursion.

This one is useful. It gives us the “insight into how to break the problem down”:

\[
 n! = \begin{cases}
 1, & n = 0 \\
 n \cdot (n-1)!, & \text{otherwise}
 \end{cases}
\]

Proving a Recursive Algorithm Works

Problem: Prove that our algorithm for randomly permuting a string gives an equal chance of returning every permutation (assuming `randrange(n)` works as advertised).

Recurrence Relations... Already Covered

See METYCSSA #5-7.

Additional Problem: Prove binary search takes \(O(\lg n)\) time.

```
// Search array[left..right] for target.
// Return its index or the index where it should go.
int bSearch(int array[], int target, int left, int right) {
    if (right < left) return left;
    int mid = (left + right) / 2;
    if (target <= array[mid])
        return bSearch(array, target, left, mid-1);
    else
        return bSearch(array, target, mid+1, right);
}
```

Binary Search Problem (Worked)

Note: Let \(n\) be # of elements considered in the array (right – left + 1).

```
int bSearch(int array[], int target, int left, int right) {
    if (right < left) return left;   // O(1), base case
    int mid = (left + right) / 2;   // O(1)
    if (target <= array[mid])
        return bSearch(array, target, left, mid-1);   // ~T(n/2)
    else
        return bSearch(array, target, mid+1, right);   // ~T(n/2)
}
```
Binary Search Problem (Worked)

For n=0: T(0) = 1
For n>0: T(n) = T(\lfloor n/2 \rfloor) + 1

To guess at the answer, we simplify:
- Change \lfloor n/2 \rfloor to \lfloor n/2 \rfloor.
- Change base case to T(1).

For n=1: T(1) = 1
For n>1: T(n) = T(n/2) + 1

T(n) = T(n/4) + 1
T(n) = T(n/8) + 2
T(n) = T(n/16) + 3
T(n) = T(n/(2^i)) + i

Sub in T(n/2) = T(n/4) + 1
Sub in \lfloor n/2 \rfloor to n/2.
Change base case to T(1) (We’ll never reach 0 by dividing by 2!)

Sub in T(n/4) = T(n/8) + 1
Sub in T(n/8) = T(n/16) + 1

To reach the base case, let n/2^i = 1
n = 2^i means i = \log n

T(n) = T(1) + \log n = \log n + 1
T(n) \in O(\log n)

Why did that work out so well?

Today’s Outline

- Thinking Recursively
- Recursion Examples
- Analyzing Recursion: Induction and Recurrences
- Analyzing Iteration: Loop Invariants
- Mythbusters: “Recursion’s not as efficient as iteration”??
 - Recursion and the Call Stack
 - Iteration and Explicit Stacks
 - Tail Recursion (but our KW text is wrong about this!)

Recursive → Iterative

It’s often simple to convert a recursive function to an iterative one (and vice versa).

Recursion Version

```cpp
int bSearch(int array[], int target, int left, int right)
{
    if (right < left)
        return left;
    int mid = (left + right) / 2;
    if (target <= array[mid])
        return bSearch(array, target, left, mid - 1); // Recursive call
    else
        return bSearch(array, target, mid + 1, right); // Recursive call
}
```

Iterative Version

```cpp
int bSearch(int array[], int target, int left, int right)
{
    while (! (right < left))
    {
        int mid = (left + right) / 2;
        if (target <= array[mid])
            right = mid - 1;
        else
            left = mid + 1;
    }
    return left;
}
```
Analyzing Loops

Maybe we can use the same techniques we use for proving correctness of recursion to prove correctness of loops...

We do this by stating and proving “invariants”, properties that are always true (don’t vary) at particular points in the program.

One way of thinking of a loop is that we spend each loop iteration fixing the invariant for the next iteration.

Proving a Loop Invariant

Induction variable: number of times through the loop.

Base case: Prove the invariant true before the first loop guard test.

Induction hypothesis: Assume the invariant holds just before some (unspecified) iteration’s loop guard test.

Inductive step: Prove the invariant holds at the end of that iteration (just before the next loop guard test).

Extra bit: Make sure the loop will eventually end!

We’ll prove insertion sort works, but the cool part is not proving it works (duh). The cool part is that the proof is a natural way to think about it working!

Proving Insertion Sort Works

// Invariant: before each test i < length (including the last
// one), the elements in array[0..i-1] are in sorted order.
for (int i = 1; i < length; i++)
{
 // i is about to go up by 1 but array[i] may be out of order!
 int val = array[i];
 int newIndex = bSearch(array, val, 0, i);
 for (int j = i; j > newIndex; j--)
 array[j] = array[j-1];
 array[newIndex] = val;
}

Induction hypothesis: just before we test k < length, array[0..k-1] are in sorted order.
(When the loop starts, i = k.)

Proving Insertion Sort Works

// Invariant: before each test i < length (including the last
// one), the elements in array[0..i-1] are in sorted order.
for (int i = 1; i < length; i++)
{
 // i is about to go up by 1 but array[i] may be out of order!
 int val = array[i];
 int newIndex = bSearch(array, val, 0, i);
 for (int j = i; j > newIndex; j--)
 array[j] = array[j-1];
 array[newIndex] = val;
}

Inductive Step: bSearch gives the appropriate index at which to put array[i]. So, the new element ends up in sorted order, and the rest of array[0..i] stays in sorted order.
(A bit hand-wavy... what should we have done?)
Proving Insertion Sort Works

// Invariant: before each test i < length (including the last
// one), the elements in array[0..i-1] are in sorted order.
for (int i = 1; i < length; i++)
{
 // i is about to go up by 1 but array[i] may be out of order!
 int val = array[i];
 int newIndex = bSearch(array, val, 0, i);
 for (int j = i; j > newIndex; j--)
 array[j] = array[j-1];
 array[newIndex] = val;
}

Loop termination: The loop ends when i == length (which it
must be eventually since length is non-negative and i
increases). At which point, array[0..i-1] is sorted... which
is array[0..length-1] or the whole array

Practice:
Prove the Inner Loop Correct

for (int i = 1; i < length; i++)
{
 // i is about to go up by 1 but array[i] may be out of order!
 int val = array[i];
 int newIndex = bSearch(array, val, 0, i);
 // What's the invariant? Maybe: just before j > newIndex,
 // "array[0..j-1] + array[j+1..i] = the old array[0..i-1]"
 for (int j = i; j > newIndex; j--)
 array[j] = array[j-1];
 array[newIndex] = val;
}

We just waved our hands at the inner loop. Prove it’s correct!
(This may feel unrealistically easy!)
Do note that j is going down, not up.

Today’s Outline

• Thinking Recursively
• Recursion Examples
• Analyzing Recursion: Induction and Recurrences
• Analyzing Iteration: Loop Invariants
• Mythbusters:
 “Recursion’s not as efficient as iteration”??
 – Recursion and the Call Stack
 – Iteration and Explicit Stacks
 – Tail Recursion (but our KW text is wrong about this!)

Mythbusters:
Simulating a Loop with Recursion

int i = 0
while (i < n)
 doFoo(i)
i++

Where recDoFoo is:

void recDoFoo(int i, int n)
{
 if (i < n) {
 doFoo(i)
 recDoFoo(i + 1, n)
 }
}

Anything we can do with iteration, we can do with recursion.

Mythbusters:
Simulating Recursion with a Stack

How does fib actually work?
Each function call generates a stack frame (also known
as activation record or, just between us, function pancake)
holding local variables and the program point to
return to, which is pushed on a stack (the call stack)
that tracks the current chain of function calls.

int fib(int n)
{
 if (n <= 2) return 1;
 else return fib(n-1) + fib(n-2);
}

cout << fib(4) << endl;
Mythbusters: Simulating Recursion with a Stack (Going Quick.. Already Discussed)
How does fib actually work?

```
int fib(int n) {
    if (n <= 2) return 1;
    else return fib(n-1) + fib(n-2);
}
```

```
cout << fib(4) << endl;
```

```
37
```

Aside: Efficiency and the Call Stack

The height of the call stack tells us the maximum memory we use storing the stack.

```
height = 4 frames
```

The number of calls that go through the call stack tells us something about time usage. (The # of calls multiplied by worst-case time per call bounds the asymptotic complexity.)

Aside: Limits of the Call Stack

```
int fib(int n) {
    if (n == 1)      return 1;
    else if (n == 2) return 1;
    else return fib(n-1) + fib(n-2);
}
```

```
cout << fib(0) << endl;
```

```
39
```

What will happen?

a. Returns 1 immediately.

b. Runs forever (infinite recursion)

c. Stops running when n "wraps around" to positive values.

d. Bombs when the computer runs out of stack space.

e. None of these.

Mythbusters: Recursion vs. Iteration

Which one is more elegant? Recursion or iteration?

Aside: Limits of the Call Stack

```
int fib(int n) {
    if (n == 1)      return 1;
    else if (n == 2) return 1;
    else return fib(n-1) + fib(n-2);
}
```

```
cout << fib(0) << endl;
```

```
39
```

What will happen?

a. Returns 1 immediately.

b. Runs forever (infinite recursion)

c. Stops running when n "wraps around" to positive values.

d. Bombs when the computer runs out of stack space.

e. None of these.

Mythbusters: Recursion vs. Iteration

Which one is more efficient? Recursion or iteration?
Accidentally Making Lots of Recursive Calls; Recall...

- Recursive Fibonacci:
  ```c
  int Fib(n)
  if (n == 0 or n == 1) return 1
  else return Fib(n - 1) + Fib(n - 2)
  ```

- **Lower bound analysis**

 \[T(0), T(1) \geq b \]
 \[T(n) \leq T(n - 1) + T(n - 2) + c \quad \text{if} \quad n > 1 \]

- Analysis

 Let \(\phi = \frac{1 + \sqrt{5}}{2} \) which satisfies

 \[\phi^2 = \phi + 1 \]

 Show by induction on \(n \) that

 \[T(n) \geq b \phi^{n-1} \]

Fixing Fib: Requires Iteration?

What we really want is to “share” nodes in the recursion tree:

Here’s one fix that “walks up” the left of the tree:

```c
int fib_dp(int n) {
    if (n == 1) return 1;
    int fib = 1, fib_old = 1;
    int i = 2;
    while (i < n) {
        int fib_new = fib + fib_old;
        fib_old = fib;
        fib = fib_new;
        i++;
    }
    return fib;
}
```

Fixing Fib with Recursion and “Memoizing”

Here’s another fix that just takes note of problems it’s solved before:

```c
int[] fib_solns = new int[large_enough]; // init to 0
fib_solns[1] = 1;
fib_solns[2] = 1;
int fib_memo(int n) {
    if (fib_solns[n] == 0) {
        fib_solns[n] = fib_memo(n-1) + fib_memo(n-2);
        return fib_solns[n];
    } else {
        return fib_solns[n];
    }
}
```

Fixing Fib with Recursion and Pure Functional Programming

In a “pure functional” programming language (like Haskell and a subset of Racket), the interpreter can (but may not) notice that nodes in the graph are the same and share them.

Why? Because Fib(n) can never return two different values in a pure functional language.
Mythbusters: Recursion vs. Iteration

Which one is more efficient? Recursion or iteration?

It’s probably easier to shoot yourself in the foot without noticing when you use recursion, and the call stack may carry around a bit more (a constant factor more) memory than you really need to store, but otherwise…

Neither is more efficient.

Tail Recursion

(should be CPSC 110 review!)

A function is “tail recursive” if for any recursive call in the function, that call is the absolute last thing the function needs to do before returning.

In that case, why bother pushing a new activation frame? There’s nothing to remember. Just re-use the old frame.

That’s what most compilers will do.

Tail Recursive?

int factorial (int n) {
 if (n == 0) return 1;
 else return n * factorial(n - 1);
}

Tail recursive?
 a. Yes.
 b. No.
 c. Not enough information.

Managing the Call Stack: Tail Recursion

void endlesslyGreet()
{
 cout << "Hello, world!" << endl;
 endlesslyGreet();
}

This is clearly infinite recursion. The call stack will get as deep as it can get and then bomb, right?
But... why? What work is the call stack doing?
There’s nothing to remember on the stack!

Try compiling it with at least –O2 optimization and running.
 It won’t give a stack overflow!

Tail Recursive?

int fib(int n) {
 if (n <= 2) return 1;
 else return fib(n-1) + fib(n-2);
}

Tail recursive?
 a. Yes.
 b. No.
 c. Not enough information.

Tail Recursive?

int fact(int n) { return fact_acc(n, 1); }
int fact_acc (int n, int acc) {
 if (n == 0) return acc;
 else return fact_acc(n - 1, acc * n);
}

Tail recursive?
 a. Yes.
 b. No.
 c. Not enough information.
Side Note: Tail Calls

```c
int fact(int n) { return fact_acc(n, 1); }

int fact_acc (int n, int acc) {
    if (n == 0) return acc;
    else        return fact_acc(n - 1, acc * n);
}
```

Actually we can talk about any function call being a “tail call”, even if it’s not recursive. E.g., the call to fact_acc in factorial is a tail call: no need to extend the stack.

So really: a function is tail-recursive iff all recursive calls are tail calls.

To Do

- Written Homework 1
- Programming Project 1
- CPSC 121 Review: Epp 4.2-4.4, 5.1-5.2, 7.1-7.2
- Read: Epp 4.5, Koffman/Wolfgang Chapter 7
- Prepare for upcoming labs

Coming Up

- First Programming Project milestones
- Priority Queues and Heaps