algorithmic thinking

- lists of items are used in many applications – examples?
- searching an item in a list is one of the most fundamental tasks in information processing
- sorting plays an important role in the context of searching

we need names for the data

- a is the array of ordered data items, indexed starting at 1:
- a[1] is the first data item, a[2] is the second data item, and so on, up to a[15]
- query is the item we are searching for
- our task: given query, output the index of query in array a

more names

- first and last refer to the indices bounding the part of the array we are searching,
- middle is the index halfway between first and last
- initially, first is 1 and last is 15

examples of updating first, last

binary search algorithm

input: query
output: index of query in a

initially:

```
1  middle  15
```

search

set middle to be halfway between first and last

if query == a[middle] then
 output middle
else
 update first and last
search in a between first and last

how to do the update?

```
leu
1  8  15
9  12 15
9  10 11
9  9  9
```
binary search algorithm

\[a = \text{ala arg last asp cys glu his ile leu lys met phe pro ser thr} \]

input: query
output: index of query in array \(a \)

first = 1; last = 15;

search

\[
\text{middle} = \text{first} + (\text{last} - \text{first})/2
\]
if query == \(a[\text{middle}] \) then
output middle
else
if query < \(a[\text{middle}] \) then last = middle - 1;
if query > \(a[\text{middle}] \) then first = middle + 1;
search in a between first and last

things in a program

- **variables**: data items that may change over time
- **identifiers**: names of variables
- **instructions/statements**: actions on data items
 - compare data values
 - assignment statement: assign a new value to a variable
- **control flow instructions**
 - if ... then ... else
 - while / repeat

food for thought

- Under which conditions (regarding the input data) does our search algorithm work?

 (Hint: Think about the number and sequence of entries in the array.)

- How can the algorithm be extended to work in cases where these assumptions don’t hold?

real java code for binary search!

```java
private int search(int query, int first, int last)
{
    int middle, result;
    middle := (first + last)/2;
    if (query == a[middle]) result = middle;
    else if (query < a[middle])
        result = search(query, first, middle-1);
    else result = search(query, middle+1, last);
    return result;
}
```