CPSC 490 Number Theory: GCD and the extended Euclidean algorithm

Number Theory

Number Theory is a branch of mathematics that explores the properties of integers, most of the time
only the natural numbers. Most problems in elementary Number Theory are easy to state and
understand, because they're just extensions of grade school mathematics. At the same time, the
solutions to these problems are not simple, usually requiring ingenious insights that are beautiful and
fascinating.

Take for example the problem of finding the greatest common divisor (gcd) of two numbers. It has
many applications, the least of which is to print a fraction in reduced form (ex. 2/3 instead of 4/6).
The solution is the famous Euclidean algorithm, which is simple to write, and unbelievably efficient.
Learning these algorithms will enrich your understanding of the numbers that you use everyday. You
may also be surprised that their applications range from magic tricks to modern day cryptography.

From now on, we assume all numbers are non-negative integers (naturals) unless otherwise noted. In
grade school mathematics, we learn how to divide using long division, a process that finds the
quotient one digit at a time, and in the end produces both the quotient and remainder. One property
that we should remember is that the remainder is always less than the divisor. So we have the

Division Algorithm (Long Division)
Given a dividend a, and a divisor b, we can always divide a by b and get a = q*b + r, where q is the
quotient and r is the remainder. Moreover, 0 <r < b.

Given a and b, the C++ operation a/b gives the quotient (when both are int), and a%b gives the
remainder. We say that b divides a if the remainder a¥b = 0. Now, for any two integers A and B, a
common divisor d is one that divides both A and B. The greatest common divisor of A and B is a
number g such that

(i) gis a common divisor of A and B, and

(ii) if d is any other common divisor of A and B, then d < g.

How do we find the gcd? We can brute force the solution, but that is of course too slow. It turns out
there is a simple algorithm, called the Euclidean algorithm, that finds the gcd very quickly. However,
to prove that it works is a bit tricky.

Euclidean Algorithm
int ged(int A, int B) {
if (B == 0) return A;
else return gcd(B, A%B);
}

This algorithm does two things. When B is 0, return a as the gcd. Otherwise, take gcd(A,B) =
gcd(B,A%B). Assuming A > B to start with, the algorithm repeatedly calculates the following:

A = ql X B + rl
B =d, X r; +r,
Ir; = ds X r, + r;
rpn3z = qn—l X In2 + Tpa

rn—2 = qn X rn—l + rn
Yooy = Qo1 X I, + 0.

CPSC 490 Number Theory: GCD and the extended Euclidean algorithm

We recursively call the ged function, taking the first column (A,B,r,...) as the first argument and the
third column (B,r;,12,...) as the second argument. So, we first call gcd(A,B), then gcd(B,n), then ged
(r1,12), etc., until we reach gcd(r,,0), which returns r,. The Euclidean Algorithm returns g=r, as the
gcd of A and B. Why is this algorithm correct, and why does it always terminate?

Proof of Termination. By the division algorithm, we get 0 <r; < B,0<r, <11, ..., S0 B >1 > ... >0,
but they are all integers, and so in at most B steps, we will get a remainder r,=0 which ends the
algorithm. Q.E.D.

Proof of Correctness. To prove correctness, we need to prove that g=r, is both a common divisor of A
and B, and is the greatest one. First, let's build from the bottom up. From the last equation, we get 1,
divides r,.1. Then one line up we see that r, must divide r,., as well, because it divides both r,, and 1,
on the right. Continuing this logic, we see that r, divides r,s, ..., until we reach the first two lines,
from which we deduce that r, divides A and B as well. Hence, g=r, is a common divisor.

Now, to prove that it is indeed the greatest common divisor, we take any other common divisor d that
divides both A and B, and work our way top-down. From the first line, because d divides A and B, d
must divide r;. Similarly, d must then divide r;, and rs, etc., until we reach the last line. We conclude
from this that d divides r, as well, and so any other common divisor of A and B must also divide g=r.
Hence, g is the greatest common divisor. Q.E.D.

We have already mentioned that the Euclidean Algorithm is fast. Before proving this mathematically,
we' 1ffirst look at an example.

Q: Find gcd(307829,301337)
A: 307829 = 1 x 301337 + 6492
301337 = 46 x 6492 + 2705
6492 = 2 x 2705 + 1082
2705 = 2 x 1082 + 541 — 541 is the ged.
1082 = 2x 541 + 0.

In 5 iterations we found the gcd of two pretty big numbers! Indeed, the algorithm is efficient in
general, as we shall now show.

Lemma 1. Take B=r, > r; > ... > 0. Then
i
<_
2 2 ’
and from this we conclude that the Euclidean Algorithm runs in O(2log,(B))

Vit

Proof. Every line in the algorithm is of the form
Yi = div2 X Yin T Tia, and
Yi 2 disz X Yisp t Tiw
> (Qie2tl) X Triip
Z 2 X Ty,
Q.E.D.

So, the algorithm is logarithmic in time, which is pretty fast. With our bound, the slowest run-time for
32-bit integers is ~64 iterations. The strongest bound known is by Lamé, who showed that in the
worst case, the number of iterations is always < 5 times the number of digits in the smaller number.

CPSC 490 Number Theory: GCD and the extended Euclidean algorithm

Extended Euclidean Algorithm

In the "real" world, simple algebra tells us that if we' rgiven A, B, and the equation

Ax =B,
then the solution is x = B / A. But, when we restrict ourselves to integers only, the story is quite
different. To learn how to solve linear equations in integers, we first study a related equation.

Given two natural numbers A and B, we would like to see what kinds of numbers we can create using
the equation A x + B y, where x and y are some other integers (can be negative). First, let g=gcd
(A,B). Then, since g divides A and B, g must also divide A x + B y. This proves that

|Ax+By| =g,
which means the smallest possible positive value of A x + B y is g. Using the Euclidean algorithm,
we shall prove that it's not just possible, but we can always find x, y sothat Ax + By = g.

The trick to this is to look at our "equation list" from the Euclidean algorithm above, and notice how
we can use it to construct a solution while we are computing g. The idea is simple. When we iterate
one level at a time, we can create numbers x; and y; that sums to the remainder using the equation.
When we progress down to the last level, we get g = 1, = A X, + B y,, which solves the problem.

To do this, first look at the first line
A =g XB + r;

Then obviously rn = Ax1 + B x -qu, giving x1 = 1, y1 = -q:. On the second line
B =qg,xXxr; +r,

weget 1, =Bx1+1nx-q
=Bx1+ (Ax1+Bx-q1)x-q
=Ax-q:+Bx(1+ qiq2),

giving X = -Q2, y2 = (1 + q1 q2). Continuing this way, it is not hard to see that we will end with x,
and y, eventually. But, the real implementation is from bottom-up because we use results from a
recursive call to build the solution. Here is such an implementation of the Extended Euclidean
algorithm that returns not only g=gcd(A,B), but also two integers x, y so that Ax + By = g.

// A triplet structure that stores divisor g, and x, y as above
struct Triple
{
int g, x, y;
Triple(int d, int w, int e) : g(d), x(w), y(e) {}
}i

// Extended gcd — Returns <g,X,y>, so that g=gcd(A,B), and A*x+B*y=g
Triple egcd(int A, int B)
{
if(B == 0) return Triple(A, 1, 0); // Base case
Triple tr = egcd(B, A % B); // Call next iteration
return Triple(tr.g, tr.y, tr.x - A / B * tr.y); // Solve

CPSC 490 Number Theory: GCD and the extended Euclidean algorithm

The egcd(A,B) function has a base case and a recursive case. The base case is trivial - when B=0, we
return g=gcd=A, x=1, y=0. Now, when we recurse, we set ' tms the triple that solves gcd(B,A%B).
Hence,

@9 B * tr.x + (A%B) * tr.y = tr.g

Just as before, gcd(A,B) = gcd(B,A%B), so we don' nheed to touch the gcd. What we need now is to
return a triple tr2 so that

A*tr2x +B*tr2ly = tr2.g =tr.g
But, we know that A = lA/B]* B + (A%B), so (1) tells us that

B*trx+ (A —|_A/BJ*B) *try = tr.g
B*trx + A*try-A/B]l*B*try = tr.g
A*try + B * (tr.x —LA/B] * try) = tr.g

which gives tr2.x = tr.y, and tr2.y = tr.x — LA/B] * tr.y, which is precisely what we have implemented
above.

Solving Ax+By=C in integers
Here is one obvious application of the extended Euclidean algorithm. Suppose we are given integers A,
B and C and want to solve the equation Ax+By=C for integers x and y. x and y are allowed to be zero

or negative. There could be either zero solutions (for example, 3x+9y=2) or an infinite number of
solutions (2x+3y=5).

The key idea is to notice that the GCD of A and B can be written as As+Bt for some integers s and t,
and as shown in the previous section, this is the smallest positive value that any linear combination of
A and B can have. Moreover, if we pick any other integers s' and t' then As'+Bt' will be a multiple of
the gcd(A,B). This lets us immediately solve the "no solution" case — if gcd(A,B) does not divide C, then
there is no hope of finding a linear combination of A and B that will be equal to C. For example, if we
want to solve 3x+9y=2, then we note that gcd(3,9) =3 does not divide 2, so there is no solution.

If gcd(A,B) does divide C, then we can take gcd(A,B)=g=As+Bt and compute the number z that we
need to multiply it by to get C:
(Ax+Bt)z = A(sz) + B(tz) = C.
We have a solution: {x=sz, y=tz}. But there are more. We can add B/g to x and subtract A/g from y:
A(x+B/g) + B(y- A/g) = Ax + By + AB/g - AB/g = Ax + By = C.
This is another solution. In fact, we can add B/g to x and subtract A/g from y as many times as we
want and get a new solution every time. Therefore, there is an infinite number of solutions {x',y'},
each one of the form
X =x + tB/g,
y =y-tB/g,
where t is any integer (positive, negative or zero). Here is an implementation of this algorithm.
Triple linearDiophantineEquationSolver(int A, int B, int C) {
Triple tr = egcd(A, B);
if(C % tr.g != 0) return Triple(0, 0, 0);
tr.x *= C / tr.g; t.y *= C / tr.g;
return tr;
}
If the returned triple has tr.g=0, then there is no solution. Otherwise, tr.g is gcd(A,B), and {tr.x,tr.y} is
one of the infinitely many solutions.

